
Computer Physics Communications 257 (2020) 107492

C
a

1
b

✩

c

(

h
0

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Parallel finite-element codes for the simulation of two-dimensional
and three-dimensional solid–liquid phase-change systemswith
natural convection✩,✩✩

Georges Sadaka a, Aina Rakotondrandisa a, Pierre-Henri Tournier b, Francky Luddens a,
orentin Lothodé a, Ionut Danaila a,∗

Laboratoire de Mathématiques Raphaël Salem, Université de Rouen Normandie, CNRS UMR 6085, Avenue de l’Université, BP
2, F-76801 Saint-Étienne-du-Rouvray, France
Sorbonne Université, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

a r t i c l e i n f o

Article history:
Received 20 February 2020
Received in revised form 7 June 2020
Accepted 28 June 2020
Available online 12 July 2020

Keywords:
Phase change
PCM
Parallel computing
Finite element
3D melting
Mesh adaptivity
Navier–Stokes–Boussinesq
FreeFem

a b s t r a c t

We present and distribute a FreeFem++ Toolbox for the parallel computing of two- or three-
dimensional liquid–solid phase-change systems involving natural convection. FreeFem++ (www.
freefem.org) is a free finite-element software available for all existing operating systems. We use the
recent library ffddm that makes available in FreeFem++ state-of-the-art scalable Schwarz domain
decomposition methods (DDM). The single domain approach used in our previous contribution
(Rakotondrandisa et al., 2020) is adapted for the use of the DDM method. As a result, the computational
time is considerably reduced for 2D configurations and furthermore 3D problems become affordable.
The numerical method is based on an enthalpy-porosity model. The same set of equations is
solved in both liquid and solid phases: the incompressible Navier–Stokes equations with Boussinesq
approximation for thermal effects. A Carman–Kozeny-type penalty term is added to the momentum
equations to bring progressively the velocity to zero into the solid. Model equations are discretized
using Galerkin triangular or tetrahedral finite elements. The coupled system of equations is integrated
in time using a second-order Gear implicit scheme. The resulting discrete equations are solved using
a Newton algorithm. The DDM approach is based on an overlapping Schwarz method. The mesh is
first split in subdomains using Scotch or Metis libraries. The final linear system is then solved in
parallel using a GMRES Krylov method, with a Restricted Additive Schwarz (RAS) preconditioner. The
mesh is adapted during the computation using metrics control. The 3D-mesh adaptivity uses the mmg
(www.mmgtools.org) open source library. Parallel 2D and 3D computations of benchmark cases of
increasing difficulty are presented: natural convection of air, natural convection of water, melting or
solidification of a phase-change material, and, finally, a water freezing case. For each case, careful
validations are provided and the performance of the code is assessed. The robustness of the Toolbox
in 3D is also demonstrated by adapting the number of processors to the number of tetrahedra, which
can considerably vary after the mesh adaptation.
Program summary
Program Title: PCM_Toolbox_DDM_2D and PCM_Toolbox_DDM_3D
CPC Library link to program files: http://dx.doi.org/10.17632/dk49rfrz9y.1
Licensing provisions: Apache License, 2.0
Programming language: FreeFem++(www.freefem.org), mmg (www.mmgtools.org)
Nature of problem: The software is scoped to parallel computations of 2D or 3D configurations of
liquid–solid phase-change problems with convection in the liquid phase. Natural convection, melting
and solidification processes are illustrated in the paper. The software can be easily modified to take
into account different related physical models.
Solution method: We use a single domain approach, solving the incompressible Navier–Stokes equations
with Boussinesq approximation in both liquid and solid phases. A Carman–Kozeny-type penalty term is

✩ The review of this paper was arranged by Prof. Hazel Andrew.
✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
om/science/journal/00104655).
∗ Corresponding author.

E-mail addresses: georges.sadaka@univ-rouen.fr (G. Sadaka), aina.rakotondrandisa@etu.univ-rouen.fr (A. Rakotondrandisa), tournier@ljll.math.upmc.fr
P.-H. Tournier), francky.luddens@univ-rouen.fr (F. Luddens), corentin.lothode@univ-rouen.fr (C. Lothodé), ionut.danaila@univ-rouen.fr (I. Danaila).
ttps://doi.org/10.1016/j.cpc.2020.107492
010-4655/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2020.107492
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107492&domain=pdf
http://www.freefem.org
http://www.freefem.org
http://www.mmgtools.org
http://dx.doi.org/10.17632/dk49rfrz9y.1
http://www.freefem.org
http://www.mmgtools.org
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:georges.sadaka@univ-rouen.fr
mailto:aina.rakotondrandisa@etu.univ-rouen.fr
mailto:tournier@ljll.math.upmc.fr
mailto:francky.luddens@univ-rouen.fr
mailto:corentin.lothode@univ-rouen.fr
mailto:ionut.danaila@univ-rouen.fr
https://doi.org/10.1016/j.cpc.2020.107492

2 G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492

c
t
t
F

a
c
p
t
s
d
p
c

p

added to the momentum equations to bring the velocity to zero into the solid phase. An enthalpy model
is used in the energy equation to take into account the phase change. Discontinuous variables (latent
heat, material properties) are regularized through an intermediate (mushy) region. Space discretization
is based on Galerkin triangular/tetrahedral finite elements. A second order Gear implicit scheme is
used for the time integration of the coupled system of equations. The resulting discrete equations are
solved using a Newton algorithm. Piecewise quadratic (P2) finite-elements are used for the velocity and
piecewise linear (P1) for the pressure. For the temperature both P2 or P1 discretization are possible.
The mesh is first split in subdomains using Scotch or Metis libraries, which are interfaced with
FreeFem++. Then, a Schwarz domain decomposition method is used through the FreeFem++library
ffddm. The final linear system is solved in parallel using a GMRES Krylov method, with a Restricted
Additive Schwarz (RAS) preconditioner. Mesh adaptivity using metrics control makes possible the
optimization of the distribution of mesh elements. For 3D case, the mmg open source library is used
to adapt the mesh.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Accurate and efficient numerical simulations of solid–liquid phase-change problems are needed in many practical applications. Metal
asting, Earth’s mantle formation and food freezing are well explored topics in this area. Recently, a great deal of attention was paid
o the simulation of latent thermal energy storage (LTES) systems based on phase-change materials (PCM). Such devices are used for
hermal energy storage (e.g. for solar power generation) or passive temperature control (e.g. for modern portable electronics) devices.
or a review of various applications of PCMs, see recent reviews by Agyenim et al. [1] and Kalnæs and Jelle [2].
In all these problems, melting and solidification are fundamental processes that are difficult to simulate if accurate physical models

re used. A sketch of the melting problem is shown in Fig. 1a. Buoyancy forces in the liquid (melted) phase generate a significant
onvective flow and thus deform the liquid–solid interface. Solidification is a similar process, but with a slower evolution and the
ossibility to generate several solid–liquid interfaces propagating simultaneously. Resolving all the scales in the liquid region using
he Navier–Stokes–Boussinesq equations and accurately capturing the solid–liquid interfaces are the main challenges for a numerical
ystem addressing these problems. In our recent contribution [3] we presented an in-depth review of physical and numerical models
ealing with solid–liquid phase-change problems with convection. The approach retained in [3] was based on the widely used enthalpy-
orosity single-domain model, also called the fixed-domain model [4]. In the present contribution, we extend this model to parallel
omputations using domain-decomposition (DD) methods, as illustrated in Fig. 1b.

Fig. 1. Sketch of the liquid–solid phase change problem considered in this paper. (a) Illustration of the melting, with convection in the liquid phase (streamlines of
the velocity field) and a bent interface separating the two phases. (b) Illustration of the domain-decomposition used in present numerical simulations. Colored patches
represent subdomains created by automatic graph partitioning libraries. Note the adapted mesh, especially around the liquid–solid interface. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

The main advantage of the enthalpy-porosity single-domain model is that the solid–liquid interface is not explicitly tracked. The
osition of the interface is computed a posteriori by post-processing the obtained temperature field T (in Fig. 1b, the interface is

represented by the iso-contour T = 0). This makes the model appropriate for the use of domain decomposition models and parallel
computing. Front tracking or front fixing deforming-grid methods (e.g. [5,6]) would obviously introduce an algorithmic complexity
penalizing parallel computing performances. Note that a different category of models was recently suggested in the literature, based on
the Lattice Boltzmann Method [7,8]. Such methods based on non-deterministic models are also well adapted for parallel computations.
For a comprehensive review of models for phase-change problems with convection, see [9].

G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492 3

t
t

Another advantage of the enthalpy-porosity single-domain model is that the same Navier–Stokes–Boussinesq (NSB) system of
equations is solved in both liquid and solid phases. Keeping in mind that the NSB equations are pertinent only in the liquid phase,
their extension into the solid phase has to preserve the single-domain formulation. This is generally obtained by introducing in the
momentum equations a penalization source term that brings the velocity to zero in the solid and do not affect the liquid. One of the
most used expression of the penalization source term follows the Carman–Kozeny model for the permeability of a porous medium
[10–12], but other mathematically equivalent expressions were suggested [13,14]. The energy equation is also modified to be valid in
both phases using an enthalpy (temperature-transform) model introducing a regularized latent-heat term. Different formulations and
implementations of the enthalpy-porosity model are presented in [5,15,16].

The enthalpy-porosity single-domain model was implemented in [3] using an adaptive finite-element method. The corresponding
Toolbox for FreeFem++(a free software under LGPL license)1 was distributed with that paper. Extensive validation tests proved the ability
of the numerical system to deal with melting and/or solidification problems of increasing difficulty. Problems with complex shapes of
the computational domain or with multiple solid–liquid interfaces were successfully computed. The mesh adaptivity capabilities of the
method ensured reasonable computational costs, since the mesh was refined only in the zones of large gradients of variables (artificial
mushy region, boundary layers) and coarsened in the solid zones with low gradients. However, some cases, such as the water freezing
or the melting-solidification cycle of a PCM, demanded hours or days on a personal computer to simulate physically pertinent time
evolution.

Consequently, the main purpose of the present contribution is to extend the single-domain model of Rakotondrandisa et al. [3] to
parallel computing using domain-decomposition methods. For two-dimensional (2D) configurations, the new Toolbox can be used to
reduce the computational time on personal computers with multi-core processors. Using high-performance computing (HPC) facilities,
the Toolbox is well adapted to simulate 3D configuration of phase-change problems. It is important to note that very few 3D simulations
with accurate capturing (mesh adaptivity) of the solid–liquid interface were reported in this research area. Adaptive FE methods were
suggested for classical two-phase Stefan problem in 2D and 3D [17,18]. For phase-change systems with convection, adaptivity strategies
were suggested and tested only for 2D problems [12,19,20]. An attempt to adapt the mesh in 3D simulations for melting phenomena was
undertaken by Zimmerman and Kowalski [21] using an AMR (Adaptive Mesh Refinement) technique based on a dual-weighted residual
method. The method displayed a major drawback, since the mesh was refined during the advancement of the liquid–solid front, but
never coarsened behind. As a consequence, only a very preliminary coarse grid simulation of the 3D melting was possible using the
AMR method. We show in this contribution that our new method using domain decomposition and mesh adaptivity is perfectly suited
to the accurately simulate 3D melting or solidification, in simple or complex-shape geometries.

The new parallel Toolbox is based on a single-domain enthalpy-porosity model for solid–liquid phase change problems with
convection. For the energy conservation equation, a temperature-based formulation takes into account the latent heat by introducing
a discontinuous source term. For the mass and momentum conservation equations, we solve in the entire domain the incompressible
Navier–Stokes equations with Boussinesq approximation for buoyancy effects. To bring the velocity to zero in the solid phase, we
introduce in the momentum equation a penalty term following the Carman–Kozeny model. The coupled system of momentum and
energy equations is integrated in time using a second-order implicit Gear scheme. The resulting discretized equations are solved
using a Newton method [19]. For the space discretization we use Taylor–Hood triangular finite elements, i.e. P2 for the velocity and
emperature and P1 for the pressure. Temperature is discretized using P2 or P1 finite elements. Discontinuous variables (latent heat,
hermal diffusivity, etc.) at the solid–liquid interface are regularized through an intermediate artificial mushy region.

To enable parallel computing, we use the ffddm framework [22], which is a set of FreeFem++ scripts implementing Schwarz domain-
decomposition methods for the efficient solution of linear systems. The mesh is first split into subdomains using an automatic graph
partitioning library, such as Scotch [23] or Metis [24]. Each subdomain is assigned to a MPI process. The linear systems are assembled
and solved in parallel using a GMRES Krylov method with a Restricted Additive Schwarz (RAS) preconditioner [25]. Mesh adaptivity
using metrics control makes possible the optimization of the distribution of mesh elements. For 3D cases, the mesh adaptivity is more
involved: the metric is first computed using mshmet, which is a module inside FreeFem++, and then used within the mmg.2 remeshing
tool [26] to generate the adapted new mesh.

The paper is organized as follows. Section 2 introduces the enthalpy-porosity single domain model based on the Navier–Stokes–
Boussinesq equations. Section 3 presents the adaptive finite-element numerical method using a Newton algorithm for the non-linear
discretized equations. We also discuss in this section the Schwarz domain decomposition method used for parallel computations and
the algorithm for mesh adaptivity (with emphasis on the 3D adaptivity technique). A description of the programs contained in the
provided 2D and 3D toolboxes is given in Section 4. The next two sections are devoted to extensive numerical validations of the method
for 2D benchmarks (Section 5) and corresponding 3D configurations (Section 6). The robustness of the algorithm is demonstrated by
comparing our results with reference data available in the literature. The capabilities of the Toolbox to deal with complex geometries
are also illustrated. The main features of the software and possible extensions are summarized in Section 7.

2. Navier–Stokes-Boussinesq equations and enthalpy-porosity model

We consider a solid–liquid system placed in a three-dimensional domain Ω . The dimensionless system of equations to be solved
in both liquid and solid regions is based on the incompressible Navier–Stokes equations, with Boussinesq approximation for buoyancy
effects, and a temperature transforming model for the energy equation [27,28]:

∇ · u = 0, (1)
∂u
∂t

+ (u · ∇)u + ∇p −
1
Re

∇
2u − fB(θ) ez − Amushy(θ)u = 0, (2)

1 FreeFem++for different OS can be downloaded from http://www.freefem.org/.
2 http://www.mmgtools.org/

http://www.freefem.org/
http://www.mmgtools.org/

4 G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492

T

T

w

w
u
i

3

3

d
S
p

∂ (Cθ)

∂t
+ ∇ · (Cθu) − ∇ ·

(
K

RePr
∇θ

)
+

∂ (CS)
∂t

= 0. (3)

Non-dimensional space, velocity, temperature and time variables in (1)–(3) were obtained from physical ones after applying the
following scaling:

x →
x
H

, u →
u

Vref
, θ =

T − Tref
δT

, t →
Vref

H
t, (4)

where H is the reference length (usually the height of the cavity when a rectangular domain is considered) and Vref a reference velocity
that will be defined differently for melting and solidification problems. Tref is the reference temperature and in most cases Tref = Tf
(the temperature of fusion), unless otherwise specified. Consequently, the non-dimensional temperature of fusion is set to θf = 0.
emperature difference δT defines a temperature scale, that will be set differently for melting and solidification cases.
The linearized Boussinesq buoyancy force (fB), the Reynolds (Re) and Prandtl (Pr) numbers are defined as (subscripts s and l refer to

the solid and the liquid phases, respectively):

fB(θ) =
Ra

PrRe2
θ, Re =

ρVrefH
µl

=
VrefH

νl
, Pr =

νl

αl
, (5)

with ν the kinematic viscosity and α = k/(ρc) the thermal diffusivity. In the expression of fB, the Rayleigh number of the flow is defined
as:

Ra =
gβH3δT

νlαl
, (6)

with β the thermal expansion coefficient and g the gravitational acceleration.
If previous non-dimensional numbers are pertinent only in the liquid phase, the non-dimensional conductivity K and specific heat

C are defined in both phases:

K (θ) =
k
kl

=

{
1, θ ≥ θf ,

ks/kl, θ < θf .
, C(θ) =

c
cl

=

{
1, θ ≥ θf ,

cs/cl, θ < θf .
(7)

he non-dimensional function S = s/sl in the energy equation (3) takes a similar non-dimensional form:

S(θ) =
s
sl

=

⎧⎨⎩
hsl/cl
δT

=
1
Ste

, θ ≥ θf ,

0, θ < θf ,

(8)

with hsl the latent heat of fusion and Ste the Stefan number.
Discontinuous step-functions defined in (7) and (8) are replaced by continuous and differentiable hyperbolic-tangent functions,

generically defined for all θ by the formula [19]:

F (θ; as, θs, Rs) = fl +
fs − fl

2

{
1 + tanh

(
as

(
θs − θ

Rs

))}
, (9)

where fl, fs are the imposed values in the liquid and solid phases, as a smoothing parameter, θs the central value (around which we
regularize) and Rs the smoothing radius. For example, we use for the non-dimensional source term in (3) the following regularization
over the artificial mushy region θ ∈ [−ε, ε]:

S(θ) =
1
Ste

−
1

2 Ste

{
1 + tanh

(
θr − θ

Rs

)}
, (10)

here θr is the central value around which we regularize (typically θr = θf = 0) and Rs the smoothing radius (typically Rs = ε).
Finally, the penalty term Amushy(θ)u in momentum equation (2) follows from the Carman–Kozeny model [12,27,29]:

Amushy(θ) = −
CCK(1 − Lf (θ))2

Lf (θ)3 + b
, (11)

here Lf (θ) is the local liquid fraction, which is 1 in the fluid region and 0 in the solid. Lf is regularized inside the artificial mushy-region
sing a hyperbolic-tangent similar to (10). The Carman–Kozeny constant CCK is set to a large value (106) and the constant b = 10−6 is
ntroduced to avoid divisions by zero.

. Numerical method

.1. Finite-element formulation

Finite-element methods for solving Navier–Stokes type systems of equations like (1)–(3) are generally based on a separate
iscretization of the temporal derivative (using finite differences, splitting or characteristics methods) and the generalization of the
tokes problem for the resulting system [30–32]. To simplify the presentation, we consider in the following that C = 1. For the
hase-change problems considered in this paper, this is a physically valid assumption.
For the time integration, we use a second-order Gear (BDF2) finite-difference scheme (see also [12]):

dφ
≃

3φn+1
− 4φn

+ φn−1
, (12)
dt 2δt

G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492 5

t

computing the solution φn+1 at time tn+1 = (n + 1)δt by using two previous states (φn, φn−1). We use this scheme to advance in time
both velocity (φ = u) and temperature fields (φ = θ). The other terms in Eqs. (1)–(3) are treated implicitly. We obtain the following
implicit semi-discretization in time of the single-domain model (1)–(3):

∇ · un+1
= 0, (13)

3
2
un+1

δt
+ (un+1

· ∇)un+1
+ ∇pn+1

−
1
Re

∇
2un+1

−Amushy(θn+1)un+1
− fB(θn+1) ez =

2
un

δt
−

un−1

2δt
, (14)

3
2

θn+1
+ S(θn+1)
δt

+ ∇ ·
(
un+1θn+1)

− ∇ ·

(
K (θn+1)
RePr

∇θn+1
)

=

2
θn

+ S(θn)
δt

−
θn−1

+ S(θn−1)
2δt

. (15)

To solve the system of Eqs. (13)–(15) we use a classical Galerkin finite-element method. We consider homogeneous Dirichlet
boundary conditions for the velocity, i.e. u = 0 on ∂Ω , and set the classical Hilbert spaces for the velocity and pressure:

V = V × V × V , V = H1
0 (Ω), Q =

{
q ∈ L2(Ω)

⏐⏐⏐⏐ ∫
Ω

q = 0
}

(16)

Following the generalization of the Stokes problem [30–32], the weak formulation of the system (13)–(15) can be written as: find
(un+1, pn+1, θn+1) ∈ V × Q × V , such that:

b
(
un+1, q

)
− γ (pn+1, q) = 0, ∀ q ∈ Q (17)

3
2δt

(
un+1, v

)
+ c

(
un+1

; un+1, v
)
+

1
Re

a
(
un+1, v

)
−(Amushy(θn+1) un+1, v) + b

(
v, pn+1)

−
(
fB(θn+1) ez, v

)
=

2
δt

(
un, v

)
−

1
2δt

(
un−1, v

)
, ∀ v ∈ V (18)

3
2δt

(
θn+1

+ S(θn+1), φ
)
+

(
un+1

· ∇θn+1, φ
)
+

(
K (θn+1)
RePr

∇θn+1, ∇φ

)
=

2
δt

(
θn

+ S(θn), φ
)
−

1
2δt

(
θn−1

+ S(θn−1), φ
)
, ∀ φ ∈ V , (19)

where (u, v) =
∫

Ω
u·v denotes the scalar product in L2(Ω) or

(
L2(Ω)

)2; the bilinear forms a, b and trilinear form c are defined as [31,32]:

a : V × V → R, a(u, v) =

∫
Ω

∇
tu : ∇v =

3∑
i,j=1

∫
Ω

∂jui · ∂jvi,

b : V × Q → R, b(u, q) = −

∫
Ω

∇ · u q = −

3∑
i=1

∫
Ω

∂iui · q,

c : V × V × V → R, c(w; z, v) =

∫
Ω

[(w · ∇) z] · v =

3∑
i,j=1

∫
Ω

wj(∂jzi)vi.

Note that we introduced in Eq. (17) a penalty term on the pressure. An extensive discussion of the role of this parameter in reinforcing
the incompressibility constraint and in the stabilization of the method is provided in [3]. We recall the main lines of this discussion.
Following the incompressibility constraint (13), the pressure is defined up to an additive constant and imposing that pn+1

∈ Q removes
his uncertainty. Equation (17) numerically ensures that the pressure field is of zero average in Ω . The penalty term in (17) acts at an
algebraic level, by modifying the matrix of the final system (a zero lower diagonal block is avoided). Since in the present toolbox we
use only iterative solvers (GMRES), this modification is not essential. It is in exchange important when LU-type direct solvers without
pivoting are used, essentially for 2D calculations (UMFPACK solver in [3,33], SuperLU in [34]). Finally, the penalty constant γ has no role
in stabilizing the method. Since the Taylor–Hood finite elements used in our simulations satisfy the inf–sup condition, this technique
is assimilated to a stable penalty, or, in other words, just a computational trick to obtain a good solution [35,36]. Note that, compared
to classical penalty methods, we use in our calculations very low values of the penalty parameter (γ = 10−7). This ensures very low
values of the average on Ω for the pressure and also for the divergence of the velocity field.

The system of non-linear equations (17)–(19) is solved using a Newton method. To advance the solution from time tn to tn+1, we
start from an initial guess w0 = (un, pn, θn) (which is the solution at tn), and construct the Newton sequence wk = (uk, pk, θk) by solving
for each inner iteration k:

b (uk+1, q) − γ (pk+1, q) = 0, (20)
3

(uk+1, v) + c (uk+1; uk, v) + c (uk; uk+1, v)
2δt

6 G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492

N
l
E

+
1
Re

a (uk+1, v) −

(
dAmushy

dθ
(θk) θk+1 uk, v

)
−

(
Amushy(θk) uk+1, v

)
+ b (v, pk+1)

−

(
dfB
dθ

(θk) θk+1 ez, v
)

=
1
δt

(
2un

−
1
2
un−1, v

)
+ c (uk; uk, v) −

(
dAmushy

dθ
(θk) θk uk, v

)
−

((
dfB
dθ

(θk) θk − fB(θk)
)

ez, v
)

, (21)

3
2δt

(
θk+1 +

dS
dθ

(θk) θk+1, φ

)
+ (uk · ∇θk+1, φ) + (uk+1 · ∇θk, φ) +

(
K (θk)
RePr

∇θk+1, ∇φ

)
+

(
dK
dθ

(θk)
θk+1

RePr
∇θk, ∇φ

)
=

2
δt

(
θn

+ S(θn), φ
)

+
3
2δt

(
dS
dθ

(θk) θk − S(θk), φ

)
(uk · ∇θk, φ) −

1
2δt

(
θn−1

+ S(θn−1), φ
)

+

(
dK
dθ

(θk)
θk

RePr
∇θk, ∇φ

)
. (22)

ote that the last term of Eq. (21) cancels in the case of a linear Boussinesq force fB (see Eq. (5)); this is not the case when non-
inear variations of the density of the liquid are considered (convection or solidification of water). Note also that the previous system of
qs. (20)–(22) depends only on un, un−1, θn and θn−1 and is independent of pn, the pressure being in this approach a Lagrange multiplier

for the divergence free constraint.
The Newton loop (following k) has to be iterated until convergence for each time step δt following the algorithm:

Navier-Stokes time loop following n
set w0 = (un, pn, θn)

Newton iterations following k
solve (20) to get wk+1

stop when ∥wk+1 − wk∥ < ξN
actualize (un+1, pn+1, θn+1) = wk+1.

(23)

For the space discretization of the system (20)–(22) we use standard Taylor–Hood finite elements [37], approximating the velocity
with P2 (piecewise quadratic) finite elements (V h space), and the pressure with the P1 (piecewise linear) finite elements (Qh space):

V h =
{
v ∈ C0(Ω̄)2

⏐⏐ ∀K ∈ Th, v|K ∈ P2
}
, (24)

Qh =
{
v ∈ C0(Ω̄)

⏐⏐ ∀K ∈ Th, v|K ∈ P1
}
, (25)

where K is an element of the triangulation Th, with characteristic mesh size h. Temperature and enthalpy variables are discretized using
either P1 or P2 finite elements.

This algorithm was implemented using the open-source software FreeFem++ [38,39]. The FreeFem++programming framework offers
the advantage to hide all technical issues related to the finite element method. The high level programming language with syntax
close to mathematical formulations, makes the implementation of the present numerical algorithm very easy. Similar algorithms based
on FreeFem++were successfully used for solving different systems of equations with locally sharp variation of the solution, such as
Gross–Pitaevskii equation [40,41] or Laplace equations with nonlinear source terms [42].

The FreeFem++syntax to implement the Newton algorithm is very close to the mathematical formulation given above. We present
below the main elements of syntax for the 3D formulation. We start by creating a new type Wh that will be used to define variables
gathering in a vector all the unknowns of the problem: the three components of the velocity, the pressure and the temperature. Wh
thus corresponds to V × V × V × Q × V (see Eq. (16)). Each component of a vector of type Wh is independently assigned with a finite-
element discretization (P2, P1 or other available in FreeFem++). In our case, we use Taylor–Hood finite elements for the fluid part and P2
for the temperature and thus we define the vector finite-element space as fespace Wh(Th,[P2,P2,P2,P1,P2]). The unknowns of
the problem are then defined by declaring: Wh [u1,u2,u3,p,T];. Note that Wh is associated to the mesh Th. If the mesh Th changes
(following mesh adaptation), the definition of Wh is automatically associated to the new mesh. Corresponding test functions are defined
similarly: Wh [v1,v2,v3,q,TT];. The next step in building the FreeFem++program is to define the weak (variational) formulation. The
built-in function varf facilitates the implementation of the algorithm (20)–(22) with a syntax close to the mathematical formulation.
The use of the macro environment (which is a pre-processor command for a simple syntax replacement in the script) makes the reading
of the programs very intuitive, when comparing each term to its mathematical expression. For example, the following macros define
the necessary operators for the variational formulation (20)–(22):

macro grad(u) [dx(u),dy(u),dz(u)]//
macro Grad(u) [grad(u#1),grad(u#2),grad(u#3)]//
macro div(u)(dx(u#1)+dy(u#2)+dz(u#3))//
macro ugrad(u,v)([u#1,u#2,u#3]’*grad(v))//
macro UgradV(u,v) [ugrad(u,v#1),ugrad(u,v#2),ugrad(u,v#3)]//
macro a(Mu,u,v)(Mu*(Grad(u):Grad(v)))//
macro b(u,q)(-div(u)*q)//
macro c(w,Z,v)(UgradV(w,Z)’*[v#1,v#2,v#3])//

Note that in some macros we used the concatenation operator #. This means that when we use in a script, for example, Grad(uw),
the preprocessor will automatically replace this part with [grad(uw1),grad(uw2),grad(uw3)] in the final script (that will be
executed). Vector operators (transposition ’ and contraction :) are naturally implemented in FreeFem++. The varf syntax is used to
build the matrix and the rhs-vector of the final linear system. Consequently, it follows closely the mathematical formulation (20)–(22).

G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492 7

[
f
C

t

T

3

r
p
i
a
c
d

S
i
T
w

To simplify the presentation, we start by giving below the varf formulation for the simple case of the stationary convection of air (the
terms coming from the discretization of the time derivative are not present):

macro VarfStatNATCONV(varfName, meshName, VhName)
varf varfName([uw1,uw2,uw3,pw,Tw],[v1,v2,v3,q,TT])
= int3d(meshName,qforder=ord)(b(uw,q) - gamma*pw*q
+ c(uw,u,v) + c(u,uw,v) + IRe*a(uw,v) + b(v,pw)
- dfB(T)*Tw*v3+ ugrad(u,Tw)*TT + ugrad(uw,T)*TT
+ grad(Tw)’*grad(TT)*IPr)
+ bcu1 + bcu2 + bcu3 + bcT;
// EOM

macro VarfrhsStatNATCONV(varfName , meshName , VhName)
varf varfName([uw1,uw2,uw3,pw,Tw],[v1,v2,v3,q,TT])
= int3d(meshName,qforder=ord)(c(u,u,v) + ugrad(u,T)*TT
- dfB(T)*T*v3 + fB(T)*v3)
+ bcu1 + bcu2 + bcu3 + bcT;
// EOM

The syntax +bcu1+ ... is used to include the macros that implement boundary conditions. The correspondence with variables
in Eqs. (20)–(22) is the following: [uw1,uw2,uw3,pw,Tw] corresponds to unknowns wk+1 = (u1k+1, u2k+1, u3k+1, pk+1, θk+1),
v1,v2,v3,q,TT] to test functions and [u1,u2,u3,p,T] to previous Newton step wk = (u1k, u2k, u3k, pk, θk). For the time evolution
ormulations, we use [u1p,u2p,u3p,pp,Tp] and [u1pp,u2pp,u3pp,ppp,Tpp] for variables at time tn and tn−1, respectively.
onsequently, the full formulation for the Newton algorithm (20)–(22) for the case of the melting of a PCM becomes:

macro VarfPCM(varfName , meshName, VhName)
varf varfName([uw1,uw2,uw3,pw,Tw],[v1,v2,v3,q,TT])
= int3d(meshName,qforder=ord)(b(uw,q) - gamma*pw*q
+ c1*[uw1,uw2,uw3,Tw]’*[v1,v2,v3,TT]
+ c(uw,u,v) + c(u,uw,v) + IRe*a(uw,v) + b(v,pw)
- dfB(T)*Tw*v3 - Amushy(T)*[uw1,uw2,uw3]’*[v1,v2,v3]
- dAmushy(T)*Tw*[u1,u2,u3]’*[v1,v2,v3]
+ ugrad(u,Tw)*TT + ugrad(uw,T)*TT + grad(Tw)’*grad(TT)*IPr
+ c1*dS(T)*Tw*TT)
+ bcu1 + bcu2 + bcu3 + bcT;
// EOM

macro VarfrhsPCM(varfName, meshName, VhName)
varf varfName([uw1,uw2,uw3,pw,Tw],[v1,v2,v3,q,TT])
= int3d(meshName,qforder=ord)(c(u,u,v) + ugrad(u,T)*TT
- [u1,u2,u3]’*[v1,v2,v3]*dAmushy(T)*T- dfB(T)*T*v3
+ fB(T)*v3 - c2*[u1p,u2p,u3p,Tp]’*[v1,v2,v3,TT]
- c3*[u1pp,u2pp,u3pp,Tpp]’*[v1,v2,v3,TT]
+ c1*(dS(T)*T*TT - S(T)*TT)
- c2*S(Tp)*TT - c3*S(Tpp)*TT)
+ bcu1 + bcu2 + bcu3 + bcT;
// EOM

New variables and coefficients can be easily identified. For example, c1, c2, c3 are the coefficients (depending on δt) corresponding
o the Gear scheme, Amushy is the Carman–Kozeny penalty term, S the enthalpy source term, etc.

New terms can be added to the variational formulation expressed in the varf structure, without affecting other parts of the program.
he implementation of new models or numerical methods for this problem is greatly facilitated by this modular structure of programs.

.2. Domain decomposition method

The main time consuming part in the algorithm (23) lies in the solution of the sequence of linear systems of the form Ax = b. To
educe the computational time, we implement an overlapping Schwarz domain decomposition method to solve these linear systems in
arallel. This task becomes an easy job by using the parallel framework ffddm, which was recently made available in FreeFem++. ffddm
s a set of high-level FreeFem++ macros that the user can call in the script to perform different steps needed for the parallel solution of
linear system using a domain decomposition preconditioner. We recall these steps below and give the corresponding ffddm macro
alls that are used in the implementation of our toolbox. The detailed description of these macros can be found in the online ffddm
ocumentation [22].
The first step in using ffddm is the partition of the global mesh T := Th into NS non-overlapping meshes {Ti}1≤i≤NS (see Fig. 1b).

tandard graph partitioners available in FreeFem++, such as Scotch [23] or Metis [24], can be used for this task. If δ is a positive
nteger, the overlapping decomposition {T δ

i }1≤i≤NS is defined recursively as follows: T δ
i is obtained by including all mesh elements of

δ−1
i and adding recursively one layer of elements. For δ = 0, T δ

i = Ti and a non-overlapping decomposition is obtained. In practice
e use δ = 1 which corresponds to an overlap of width 2. The mesh partitioning step is performed in macro ffddmbuildDmeshAug.

8 G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492

a
t
b
a
e
{

A
s
o
a

w
t
c
t
o
p
o
p
M
a
f
c
a
i
i

U
s
o
a

3

i
l
i
v
a
g
i
a

b
F
p
c
4
u
a

Metis is the default partitioner. Scotch can be selected by simply declaring ffddmpartitioner = 2. Each MPI process i then holds
the local mesh T δ

i corresponding to subdomain i.
The second important step is to build an appropriate preconditioner for the linear system. Several types of preconditioners are

vailable in ffddm. For the mathematical background of domain decomposition methods and associated preconditioners, we refer
o [25]. In the present toolbox, we use the Restricted Additive Schwarz (RAS) preconditioner that proved very efficient. We describe
elow the main ideas of the corresponding algorithm. Let Wh = V h × Qh × Vh be the global finite element space for velocity, pressure
nd temperature variables. The mesh decomposition induces a natural decomposition of the global space Wh on T into NS local finite
lement spaces {W δ

i }1≤i≤NS , each of them defined on the corresponding local mesh T δ
i . Consider the restrictions {Ri}1≤i≤NS from Wh to

W δ
i }1≤i≤NS , and a local partition of unity {Di}1≤i≤NS such that

NS∑
i=1

RT
i DiRi = In×n. (26)

t the algebraic level, if n is the global number of unknowns and {ni}1≤i≤NS are the numbers of unknowns for each local finite element
pace, then Ri is a Boolean matrix of size ni ×n, and Di is a diagonal matrix of size ni ×ni, for all 1 ≤ i ≤ NS . Note that RT

i , the transpose
f Ri, is a n × ni matrix that gives the extension by 0 from W δ

i to Wh. The construction of the local finite element spaces {W δ
i }1≤i≤NS

nd partition of unity matrices {Di}1≤i≤NS are implemented in the macro ffddmbuildDfespaceAug.
Using these matrices, we define the RAS preconditioner as:

M−1
RAS =

NS∑
i=1

RT
i DiA−1

i Ri, (27)

ith local subdomain matrices {Ai}1≤i≤NS = {RiART
i }1≤i≤NS . The preconditioner (27) is naturally parallel since its assembly requires

he concurrent factorization of each {Ai}1≤i≤NS . In practice, this operation is performed locally on different processes in a distributed
omputing context, as one subdomain is assigned to each MPI process. Likewise, applying (27) to a distributed vector only requires peer-
o-peer communications between neighboring subdomains, and a local forward elimination and backward substitution (see Chapter 8
f Dolean et al. [25], for a more detailed description). Local matrices {Ai}1≤i≤NS are also used to perform the parallel matrix–vector
roduct A∗v that are main operations in a parallel GMRES algorithm with preconditioner M−1

RAS. The parallel assembly and factorization
f local matrices {Ai}1≤i≤NS are performed in the macro ffddmsetup, that also defines the parallel matrix–vector product and
reconditioner operators. Additionally, the macro ffddmbuildrhs computes the distributed right-hand side {bi}1≤i≤NS = {Rib}1≤i≤NS .
acros ffddmsetup and ffddmbuildrhs use the corresponding variational varf formulations of the problem defining the bilinear
nd linear parts, respectively. Finally, the linear system Ax = b is solved in parallel with a GMRES algorithm, called in the function
GMRES. We apply in our algorithms a left preconditioning by M−1

RAS. The error tolerance εG in GMRES is variable and adapted to the
onvergence of the Newton algorithm by monitoring εN = ∥wk+1−wk∥. We set εG = 10−10 if εN < 10−4, εG = 10−9 if 10−4 < εN < 10−2

nd εG = 10−2 if εN > 10−2. The output of the fGMRES function is the distributed solution {xi}1≤i≤NS = {Rix}1≤i≤NS . The macro fromVhi
s then used to recover the global solution x from the distributed solution. The global solution is finally used for visualization and also
n the mesh adaptation procedure.

A detailed description of the ffddm calls used for the different steps of the domain decomposition method can be found in the
ser’s manual of ffddm [22]. In the entire simulation process, the parallel algorithm described above to assemble and solve the linear
ystem is performed at each time step and at each Newton iteration. However, the first two steps concerning the construction of the
verlapping mesh and the finite element space decomposition are performed only once at the beginning of each time step. These steps
re reiterated only if a mesh change occurs, after calling the mesh adaptivity procedure (see next section).

.3. Mesh adaptivity

For 2D simulations, we use the standard mesh adaptivity function (adaptmesh) offered by FreeFem++ [39]. The key idea implemented
n this function (see also [43–48]) is to use the Delaunay algorithm to generate a new triangular mesh with edges close to the unit
ength in the metric M =

|H|

E , where |H(x)| is the Hessian of the variable χ at point x (after being made positive definite) and E the
nterpolation error for χ . This implies to modify the scalar product used in the automatic mesh generator to evaluate distance and
olume by defining a scalar product based on the evaluation of the Hessian H of the variables of the problem. Equilateral elements
re thus constructed, with an equally distributed interpolation error E over the edges of the mesh. The previous approach could be
eneralized for a vector variable χ = [χ1, χ2]. After computing the metrics M1 and M2 for each variable, the retained metric is the
ntersection M = M1 ∩ M2, defined such that the unit ball of M is included in the intersection of the two unit balls of metrics M2
nd M1 (for details, see the procedure defined in [47]).
The use of the mesh adaptivity algorithm for 2D phase-change systems is described in detail in [3]. In 2D problems considered

elow, we took into account several metrics computed from different variables monitoring the evolution of the phase-change system.
or the natural convection system, the mesh was adapted using the values of the two velocity components and the temperature. For
hase-change systems, to accurately track the solid–liquid interface we added the variation of the enthalpy source term in the adaptivity
riterion. For water systems (convection or freezing), we also added an extra function tracking the anomalous change of density around
oC . To reduce the impact of the interpolation on the global accuracy for time-depending problems, we considered, for each variable
sed for adaptivity, the metrics computed at actual (tn+1) and previous (tn) time instants (see also [17]). The capabilities of the mesh
daptivity algorithm in 2D are illustrated in Section 5.
For 3D simulations, the metric was first computed using mshmet, which is a FreeFem++ module, following the code:

load " mshmet "
real[int] hmetric(6*ThBackup.nv);
hmetric=mshmet(ThBackup ,[u1Backup,u2Backup,u3Backup],normalization=1,aniso=1,nbregul=1,

hmax=hmax,hmin=hmin,err=errh);

G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492 9

f

l

Several parameters of the mesh can be thus controlled (hmin, hmax, anisotropy, etc.). Then, the metric was regularized in order to avoid
lat tetrahedra and saved in m11[] :

load " aniso "
boundaniso(6,hmetric ,40);
fespace Wh6Backup(ThBackup ,[P1,P1,P1,P1,P1,P1]);
Wh6Backup [m11,m21,m22,m31,m32,m33];
m11[]=hmetric;

The external software mmg [26] was finally loaded to read the saved metric and the old mesh to finally generate the adapted new mesh:

load " mmg "
ThBackup = mmg3d(ThBackup ,metric=m11[],verbose=0,hmin=hmin,hmax=hmax,hgrad=adaptratio ,mem

=10000);

4. Description of the programs

In this section, we first describe the architecture of the programs and the organization of the provided files. Then we focus on the
ist of input parameters and the structure of output files.

Fig. 2. Folder tree structure of the PCM_Toolbox_DDM_2D and PCM_Toolbox_DDM_3D to solve solid–liquid phase-change problems.

4.1. Program architecture

Figure 2 gives a schematic overview of the content of the Toolbox. To facilitate the reading and the assimilation of the programs,
we separated the 2D and 3D Toolboxes in directories PCM_Toolbox_DDM_2D and PCM_Toolbox_DDM_3D. Many detailed comments
were included in programs, with direct reference to the mathematical expressions used in this paper. The used FreeFem syntax was
intentionally kept at a low level of technicality and supplemented with detailed comments when specific more technical syntax was
used.

This directory is organized as follows:

1. The directory Common_Macros contains five files:

• Macro_operator.idp includes macros and functions defining mathematical operators,
• Macro_problem.idp: macros defining the variational formulation of the problem,
• Macro_restart.idp: macros used to start a new simulation from a saved field,
• Macro_output.idp: macros used to save the solution with different formats.

2. The directory Test_Cases contains four subdirectories, each of them defining one of the following applications:

• natural convection of air or water in a differentially heated square/cubic cavity,
• melting of a PCM stored in containers of different shapes,
• melting followed by solidification of a rectangular/cubic PCM,
• freezing of pure water in a square/cubic cavity.

Each subdirectory contains three files: NEWTON_$case.edp is the main FreeFem++script file, param_phys.inc defines the physical
parameters and param_num.inc the numerical parameters. The 3D Toolbox is supplemented with the script Read_3D_data.edp,
which reads data from the RST folder and generates the files for visualization with Medit, Paraview or Tecplot. For example, to
run the natural convection case of air in a square cavity, the user can use the following command in a terminal window: mpirun
-np 6 FreeFem++-mpi NEWTON_stat_natconv_ddm.edp -wg -v 0 -ns.
The folder structure of each test case is illustrated in Fig. 3. The obtained solutions are saved in the folder OUTPUT/Data.
Depending on the output format selected by the user, data files are generated in specific folders for being visualized with Tecplot,
Paraview, Gnuplot or Medit. We also provide in the folder Figures ready-made layouts for each visualization software. The
user can thus obtain the figures from this paper using newly generated data. More details about the output structure are given
below.

10 G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492
Fig. 3. Structure of each Test-case folder. Solid lines in the diagram correspond to folders which come with the Toolbox, the dashed lines to folders generated
after running the script NEWTON_case.edp, the hashed lines to folders generated after running the script NEWTON_case.edp in the 2D case. Finally, the dotted lines
indicate folders generated after running the script Read_3D_data.edp, which reads data from the RST folder and generates the Medit, Paraview and Tecplot files for
visualization.

4.2. Input parameters

Physical parameters and parameters related to the run are separated into two files.
(1) The file param_phys.inc contains the physical descriptions of the problem:

• typeT: is the finite-element type for the temperature, with possible values P2 or P1,
• Torder: is the order of accuracy of the time integration scheme, with possible values 1 (Euler scheme) or 2 (Gear scheme),
• scalAdim: defines the characteristic scales of the problem, see (4). Possible values 1, 2 or 3 correspond to the following choice of

the characteristic scales [19]:

(1) : V (1)
ref =

νl

H
H⇒ t (1)ref =

H2

νl
H⇒ Re = 1, (28)

(2) : V (2)
ref =

α

H
H⇒ t (2)ref = t (1)ref Pr H⇒ Re = 1/Pr, (29)

(3) : V (3)
ref =

νl

H

√
Ra
Pr

H⇒ t (3)ref = t (1)ref

√
Pr
Ra

H⇒ Re =

√
Ra
Pr

, (30)

• xl, xr , yl, yr : are the values defining the dimensions of the cavity [xl, xr] × [yl, yr],
• Pr, Ra, Ste: are the Prandtl, Rayleigh and Stefan numbers, see (6) and (5),
• Thot , Tcold: are dimensionless temperatures according to (4),
• bcu1, bcu2, bcT: are macros defining the velocity (u) and the temperature (T) boundary conditions,
• epsi: is the half width ε of the mushy region. Default value = 0.01,
• dt: is the dimensionless time step,
• tmax: is the dimensionless final time,
• Parameters for regularization functions:

The parameters of the hyperbolic-tangent function (9) used to regularize discontinuous functions are set by default as follows:

fs fl as θs Rs CCK b

Enthalpy 0 1/Ste 1 0.01 0.01 – –
Carman–Kozeny 0 1 1 0.01 0.01 106 10−7

Conductivity (water) 1 2.26/0.578 1 θf 0.015 – –

• rho(T) and Drho(T): (water cases only) define the density and its derivative as functions of the temperature, following the model
[49]:

ρ(T) = ρm(1 − ω|T − Tm|
q),

ρm [kg/m3] ω [◦C−q] q Tm [◦C]
−6
999.972 9.2793 · 10 1.894816 4.0293

G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492 11
• fB(T), dfB (T): define the buoyancy force and its derivative.

(2) The file param_num.inc contains the parameters controlling the run.
Restart parameters:

• Nsave: the solution is saved every Nsave time steps in the Data folder (see Fig. 3). The temperature and velocity fields are saved
in Tecplot and Medit folders, while the liquid fraction, the Nusselt number, and the accumulated heat input are saved in the
Gnuplot folder.

• Nrestart: restart files (mesh and solution) are saved every Nrestart time steps. Solutions at current and previous iterations, the
CPU time, the accumulated heat input Q0, and the time step dt are saved in the folder RST.

• Ncondt: allows the user to stop the run and save the solution properly. The file OUTPUT/zz.condt is read every Ncondt time
steps: if the user replaces the value ‘‘0’’ in this file by ‘‘1’’ the run is stopped. This is a simple solution for a clean stop of the job
by the user. Default value = 20.

• Nremesh: the mesh is adapted every Nremesh iterations. If this parameter is set to ‘‘1’’ the mesh is adapted every time step.
• IFrestart: is a Boolean controlling the set up of the initial field.

IFrestart = 0, the initial condition is built in the code for each test case. For the PCM melting cases, the PCM is initially
motionless at isothermal temperature. To set-up a smooth initial field, a few time steps (with very small δt) are computed by
increasing progressively the boundary temperature at the hot wall and the Rayleigh number (by continuation). Outputs are saved
in OUTPUT/Data-RST-0.
IFrestart > 0, (positive integer values) the solution field previously computed at iteration IFrestart is loaded from the folder
OUTPUT/Data-RST-filenameRST/RST, with filenameRST a variable selecting the restart folder. Note that for 3D cases, the
user has to copy manually the solution used as restart field to the folder INIT.
IFrestart < 0, (negative integer values), the same principle for loading a solution is used, but from the folder INIT (see Fig. 3). The
solution fields stored in this folder could come from different previous calculations (e.g. a steady state solution or, for the water,
the natural convection field before freezing).

Newton parameters:

• epsconv: is the value of the stopping criterion for steady cases,
• gamma: is the penalty parameter in (13). Default value = 10−7,
• tolNewton: is the Newton tolerance ξN (see (23)). Default value = 10−6,
• newtonMax: limits the maximum number of iterations in the Newton algorithm (23). Default value = 50.

Mesh parameters:

• nbseg: is the number of segments for the discretization along the x and y directions,
• errh: is the interpolation error level. Default value = 0.02,
• hmin, hmax: are the minimum and the maximum edge size, respectively,
• adaptratio: is the ratio for a prescribed smoothing of the metric. For a value less than 1.1 no smoothing is done. Default value =

1.5,
• nbvx: is the maximum number of vertices allowed in the mesh generator. Default value = 50 000.

Output parameters:

• dircase: is the name of the output folder,
• fcase: is the prefix-name for output files.
• Paraview, Tecplot, Medit, Gnu: correspond to the name of the visualization software to be used; the format of the outputs written

in OUTPUT/Data (see Fig. 3) is set accordingly.

4.3. Outputs

When a computation starts, the OUTPUT directory is created (see Fig. 3). It contains two folders storing the output data and the echo
of the run parameters. The folder Data contains four subdirectories with different output format files of the computed solution. File
names are created using the prefix defined by the parameter fcase, the current iteration and the current dimensionless time t . Solution
files can be visualized using either Tecplot or any other CFD Visualization tools (Paraview, Visit, etc.). Moreover, .gmsh (mesh) and .rst
(fields) files are generated in the folder RST to enable restarts of the computation. Note that the folder FFglut contains FreeFem++scripts
that read and visualize the RST-files to facilitate the selection of a restart field. An .echo file with a summary of the main parameters,
information on the run and the names of the output files is saved in the folder RUNPARAM. This directory additionally contains a copy
of the .inc parameter files, allowing an easy identification of each case and preparing an eventual rerun of the same case.

5. 2D parallel simulations

In this section we consider well defined 2D benchmarks used to validate numerical codes for natural convection and phase-change
problems. All these cases were described in detail in [3] and computed using sequential codes. We present below the results obtained
for the same cases, but using parallel computations with the new Toolbox: (i) the natural convection of air (Section 5.1), (ii) the melting
or solidification of a phase-change material (PCM) (Section 5.2) and (iii) the convection and the freezing of pure water (Section 5.3).
This approach allows us to test the programs by adding progressively non-linearities in the Newton algorithm. In the following, we
validate each case with respect to the physical reference data available in the literature. To have a quick overview of the benefits of
using parallel computing, we compare in Table 1 computational (CPU) times necessary to run sequential and parallel computations of

12 G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492

r

m
l

Table 1
Comparison of CPU times for 2D simulations performed with one or 6 MPI processes. Speed-up of the parallel computation, maximum number of triangles of the
adapted mesh, total number of time steps and ratio between the CPU time for adapting the mesh and the CPU time for a complete time step. All computations were
performed on a Macbook pro 2.2 GHz Intel Core i7, 16 GB of DDR4 2400 MHz RAM.

Case CPU time 1
MPI proc.

CPU time 6
MPI procs.

Speed-up Max number of
triangles

Number of
time steps

Ratio CPU
adapt/CPU time
step

Unsteady NC of air, Ra = 106 00:01:39 00:00:50 1.98 2902 53 18%
PCM-Case #1 00:06:39 00:04:35 1.45 2590 81 5%
PCM-Case #2 01:31:11 00:40:44 2.23 5928 501 8%
PCM-Case #3: 1 tube 00:25:09 00:19:18 1.3 5052 401 6%
PCM-Case #3: 4 tubes 00:28:57 00:16:13 1.78 13,507 151 6%
PCM-Case #3: 9 tubes 00:33:28 00:17:44 1.88 24,866 100 5%
PCM-Case #4 06:31:31 01:38:35 3.97 5371 2001 15%
PCM-Case #5 00:07:52 00:03:17 2.39 2898 117 12%
Cycle of a PCM 00:13:58 00:08:49 1.58 3160 383 17%
NC of water 00:00:36 00:00:21 1.71 2686 20 14%
Unsteady NC of water 00:01:49 00:00:54 2.02 3368 33 10%
Water freezing 00:22:49 00:13:38 1.67 3743 296 10%

each case (with default parameters) on a personal computer. We also display the maximum number of triangles of adapted mesh and
the ratio between the CPU time required to adapt the mesh to the CPU time for a complete time step. Mesh adaptation is performed
every time step. To make the simulations accessible and testable by using a personal computer with a multi-thread processor, we use
in this section only 6 MPI processes.

5.1. Natural convection of air

We start by testing the Newton algorithm (20)–(22) for the case of natural convection, i.e. C = K = 1, Amushy(θ) = S(θ) = 0. We
consider the classical problem of the thermally driven square cavity [0, 1]×[0, 1], filled with air. The Boussinesq term fB(θ) is then linear
and takes the form (5). Top and bottom walls are adiabatic, while the temperature is fixed on the left (hot) wall and the right (cold)
wall. Natural convection flows are computed for three values of the Rayleigh number: Ra = 104, 105, 106. The Prandtl number is set to
Pr = 0.71. For these values of the Ra number, the flow is known to be steady [50] and therefore, we also solve the time-independent
version of Eqs. (20)–(22).

We provide programs for both steady (time-independent) and time-dependent cases. The steady case is performed using a
continuation following the Rayleigh number: a smaller value for Ra is set initially and is then smoothly increased until reaching the
wanted value. The time-dependent case is computed until a steady state with a single convection cell is reached.

The temperature is imposed at the right (cold) wall as θc = −0.5 and at the left (hot) wall as θh = 0.5. Top and bottom walls are
adiabatic. The initial condition models a cavity filled with motionless air (u = 0), with a linear distribution of the temperature. Both
steady and time-dependent codes converge to the same flow state, with a single convection cell. For this final state, horizontal u(y)
and vertical v(x) velocity profiles were extracted at mid-domain (y = 0.5 and x = 0.5, respectively) and plotted in Fig. 4. Our results
are in very good agreement with reference numerical results obtained by Le Quéré [50] with a spectral code.

Fig. 4. Natural convection of air in a differentially heated cavity for values of Ra ranging from 104 to 106 . (a) Vertical velocity profile v(x) along the horizontal
symmetry line (y = 0.5). (b) Longitudinal velocity profile u(y) along the vertical symmetry line (x = 0.5). Results obtained using the present Toolbox, with a mesh
esolution nbseg = 80. Comparison with the spectral simulations by Le Quéré [50] (solid lines).

Table 2 offers a quantitative assessment of the accuracy of the present Newton method. The values of umax and the location Y of this
aximum are compared to reference values from [50]. The Newton method gives results identical to reference values, with a difference

ess than 0.1%.

G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492 13

c
s
s
s

n

T
P

Table 2
Natural convection of air in a differentially heated cavity. Maximum value umax of the horizontal velocity profile at mid-domain (x = 0.5) and location Y of this
maximum. Comparison to reference values reported by Le Quéré [50].
Run umax at x = 0.5 (error) Y (error)

Reference values spectral 0.0648344 0.850
Newton (Steady) nbseg = 80 0.0648126 (0.03%) 0.850394 (0.05%)
Newton (Unsteady) nbseg = 80 0.0647805 (0.08%) 0.850394 (0.05%)

5.2. Melting or solidification of a phase-change material (PCM)

We continue our validation tests by considering the full system (20)–(22) for the case of the melting or solidification of a phase-
hange material. Two new non-linearities are now present in the system: the Carman–Kozeny penalty term Amushy(θ) and the enthalpy
ource term S(θ). The function S is regularized using (10). We also consider that the material properties in the liquid and solid are the
ame, i.e. C = K = 1. This is a frequent assumption [51,52]. Five cases were computed (the exact values of the defining parameters are
ummarized in Table 3):

• PCM-Case #1 simulates the experimental study of Okada [53]. It consists of a differentially heated square cavity, filled with
octadecane paraffin.

• PCM-Case #2 is extracted from the collective publication by Bertrand et al. [54], compiling the results of different numerical
approaches used for the simulation of the melting of a PCM at high Rayleigh numbers.

• PCM-Case #3 simulates the melting of a cylindrical PCM with heated inner tubes, as in [7].
• PCM-Case #4 simulates the melting of Gallium in a rectangular cavity heated by the side-wall, as in [10].
• PCM-Case #5 simulates the solid crust formation in a highly distorted PCM domain, as in [55].

We summarize in Table 3 the values of physical parameters and the scales used to simulate these cases. The values of the CPU time
ecessary to run each case (with default parameters) are given in Table 1.

able 3
arameters for the cases simulating the melting of a phase-change material.

Case #1 Case #2 Case #3 Case #4 Case #5

Ra 3.27 · 105 108 5 · 104 7 · 105 106

Pr 56.2 50 0.2 0.0216 0.1
Ste 0.045 0.1 0.02 0.046 4.854

δt 1 10−2 10−2 10−5 1

Vref
νl
H

νl
H

νl
H

νl
H

νl
H

√
Ra
Pr

5.2.1. PCM-case #1: Melting of an octadecane PCM in a square cavity
Okada [53] studied experimentally the melting of an octadecane PCM in a square cavity of height H = 1.5 cm. His results were

often used to validate numerical methods [19,51–53]. The material is initially solid (θ0 = −0.01) and melts progressively starting from
the left boundary, maintained at a hot temperature θh = 1. The right boundary is also isothermal, with cold temperature θc = −0.01.
Horizontal boundaries are adiabatic. The other parameters of this case are reported in Table 3. The computation starts from a refined
mesh near the hot boundary. Mesh adaptivity is applied every time step. Fig. 5 shows in the left panel the adapted mesh at t = 80.1 and
the 6 subdomains of the domain decomposition used for the parallel computation. The velocity vectors in the liquid phase, represented
in the middle panel, show the strong convection cell affecting the shape of the liquid–solid interface. To offer a quantitative validation
of this computation, we compare in Fig. 5 (right panel) the position of the solid–liquid interface at two time instants. Since δt = 1 in
the simulation, we consider t = 40.1 and t = 79.1 and compare with experimental data of Okada [53] taken at slightly different time
instants, t = 39.9 and t = 78.7. The obtained shape and position of the liquid–solid interface are very close to experimental results.
We show in the same figure that the parallel computation (6 MPI processes) gives the same results as the sequential simulation (1 MPI
process).

5.2.2. PCM-Case #2: Melting of an octadecane PCM with high Rayleigh number
This case considers the same problem of the melting of a PCM, but with a very high value of the Rayleigh number, Ra = 108 (see

Table 3). This case is very challenging since the natural convection becomes important in the fluid flow, and enhances considerably the
heat transfer. Bertrand et al. [54] compiled results provided by five different authors (Lacroix, Le Quéré, Gobin-Vieira, Delannoy and
Binet-Lacroix) who used different numerical methods to compute the basic configuration presented in this section. This benchmark is
a very demanding numerical test. The high velocity, inducing a very narrow thermal boundary layer, can lead to unrealistic results if
under-resolved. This explains why two investigators among the five failed to correctly predict the process.

We show in Fig. 6 an illustration of the flow configuration at dimensionless time t = 5. The adapted mesh and the domain
decomposition for the parallel computation with 6 MPI processes is presented in the left panel. The convection flow is depicted in
the middle panel. Note the very narrow boundary layers, which impose a very refined mesh in these regions. This flow particularity
explains why this case is rather costly in terms of computational time (see Table 1), when compared to the previous one. The right
panel of Fig. 6 offers a quantitative validation of this computation. The position of melting front at t = 5 is in good agreement with that
reported by Gobin and Le Quéré. Details of their numerical method are presented in [56]. Gobin used a front-tracking method based
on a coordinate transformation with a finite volume method and a 62 × 42 grid, while Le Quéré solved a single domain model using a
second-order finite volume method with a 192 × 192 grid. The interest of the mesh adaptation is clearly demonstrated for this case,

since we initially used a coarse 40 × 40 grid.

14 G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492

a
b

m
t
b
r

5

L
d
b
u
p
e

Fig. 5. PCM-Case #1. Melted PCM at time instant t = 80.1. Adapted finite-element mesh and subdomains used for the domain decomposition and parallel computing
with 6 MPI processes (left panel). Velocity vectors in the liquid phase (central panel). Position of the solid–liquid interface and comparison with experimental data
of Okada [53] for two time instants (right panel).

Fig. 6. PCM-Case #2. Melting of the PCM with high Rayleigh number (Ra = 108). Simulated configuration at time instant t = 5. Adapted finite-element mesh and
subdomains used for the domain decomposition and parallel computing with 6 MPI processes (left panel). Velocity vectors in the liquid phase (central panel). Position
of the solid–liquid interface and comparison with five sets of results presented in [54].

5.2.3. PCM-Case #3: Melting of cylindrical PCM with inner heated tubes
A more complex geometry, suggested by Luo et al. [7], is simulated in this section. It consists of a cylindrical PCM of radius R = 1

with heated tube inclusions of different arrangements. This configuration is also interesting from a practical point of view. Agyenim
et al. [1] pointed out that more than 70% of the PCM containers used for heat storage are using shell-tube systems. We simulate three
configurations, with one, four and nine heated tubes (see Fig. 7). The size of the tubes is adjusted to have the same total tube area
for all configurations. The radius Ri of the inner tube is Ri = R/4 for the case with one tube, Ri = R/8 for the four heated tubes case
nd Ri = R/12 for the case with nine tubes. The inner tubes are heated at constant θ = θh (Dirichlet boundary condition). A Neumann
oundary condition (∂θ/∂n = 0) is used for the outer boundary. For the velocity, all boundaries are considered as non-slip walls (u = 0).
For the three configurations, Fig. 7 shows the adapted mesh and the domain decomposition with 6 subdomains (left column), the

velocity vectors (central column) and the temperature field (right column). The time instants are chosen to have the same liquid fraction
in the system, Lf = 80%. Only half of the domain is simulated, since all configurations are symmetric with respect to the vertical axis.
The mesh is refined initially around the inner tubes, and is dynamically adapted at each time step around the melting front and in the
thermal boundary layer area.

To estimate the heat-storage efficiency of each configuration, we plot in Fig. 8 the time evolution of the liquid fraction Lf . Including
ore heated tubes results in an enhanced heat transfer and a faster melting process. The nine-tube configuration melts 5 times faster

han the reference configuration with one tube. Note also from Fig. 8 the good agreement between our results and those reported
y Luo et al. [7], obtained using a completely different model based on the Lattice Boltzmann Method. We checked again that the
esults obtained with 6 MPI processes are identical to those computed with the sequential code.

.2.4. PCM-Case #4: Melting of gallium in a rectangular cavity
The melting of the Gallium in a rectangular cavity is a challenging case that generated an animated debate in the literature, since [57].

e Quéré and Gobin [58] showed that the flow has to display a multi-cellular structure, resulting from the hydrodynamic instabilities
uring the conduction regime before the onset of convection. This multi-cellular flow configuration was also found numerically
y Hannoun et al. [10]. These authors pointed out that coarse grids or inconsistencies in the mathematical model could generate
nphysical flows, with a mono-cellular convection cell. Therefore, this case is a relevant exercise to test the accuracy of our method. The
arameters of this case are reported in Table 3. To capture the very small convection cells during the first step of the melting, Hannoun

t al. [10] used a 800 × 1120 fixed grid. With our adaptive method, a maximum of 4820 triangles are necessary to reproduce the

G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492 15

w

n
c
i
p
w
n

5

s
i

Fig. 7. PCM-Case #3. Melting of a cylindrical PCM with heated inner tubes. Flow configuration for one tube at t = 2.491 (first raw), four tubes at t = 0.981 (middle
row) and nine tubes at t = 0.411 (last row). Time instants correspond to the same liquid fraction in the system, Lf = 80%. Adapted mesh and domain decomposition
ith 6 subdomains (left column), velocity vectors with background color representing the velocity intensity (central column) and temperature field (right column).

umerical result of Hannoun et al. [10]. The grid size is thus reduced with our method by a factor of 100. We illustrate in Fig. 9 the
onfiguration of the phase-change system at dimensionless time t = 0.02. Note in the left panel the refined mesh at the liquid–solid
nterface and also at the borders of each convection cell. The multi-cellular structure of the flow is illustrated by the velocity field
resented in the middle panel. The structure of the temperature field in the right panel shows that the rolls of the convection cells are
ell resolved. The number of cells decreases later through a process of roll merging, as it was also reported by Hannoun et al. [10]. Our
umerical results are in good agreement with the observations of Hannoun et al. [10], Cerimele et al. [59] and Giangi and Stella [60].

.2.5. PCM-Case #5: Solid crust formation in a highly distorted domain
This final PCM case considers the solidification of a PCM in a domain with a more complicated shape (Fig. 10). This case was

imulated by Nourgaliev et al. [55], using a discontinuous Galerkin finite element method. The fluid is initially motionless, with an
nitial dimensionless temperature θ0 = 2. The temperature of fusion is set to θf = 1.4, according to [55] (see Table 3 for the values of
all parameters). The left side boundary is maintained at a cold temperature θc = 1.39 in the initial stage. The right wall is isothermal,
with hot temperature θh = 2. A nearly steady-state natural circulation is induced in the early time evolution of the flow. Then, the
cold temperature at the left wall is decreased to θ = 1, below the temperature of solidification. At this point, the formation of a solid
c

16 G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492

p

d

c
M
t
d
c
s

Fig. 8. PCM-Case #3. Melting of a cylindrical PCM with heated inner tubes. Time evolution of the liquid fraction for configurations with one, four, and nine heated
tubes. Comparison with numerical results of Luo et al. [7].

Fig. 9. PCM-Case #4. Melting of Gallium. Simulated configuration at t = 0.02. Adapted finite-element mesh and subdomains used for the domain decomposition and
arallel computing with 6 MPI processes (left panel). Velocity vectors in the liquid phase (central panel). Temperature field (right panel).

Fig. 10. PCM-Case #5. Solid crust formation in a distorted domain. Simulated configuration at t = 29.33. Adapted finite-element mesh and subdomains used for the
omain decomposition and parallel computing with 6 MPI processes (left panel). Velocity vectors in the liquid phase (central panel). Temperature field (right panel).

rust layer starts at the left boundary. Figure 10 depicts the configuration of the solid–liquid system at dimensionless time t = 30.
esh adaptivity used metrics computed from the two components of the velocity and from the phase-change variables (enthalpy and

emperature). Consequently, it is shown in the left panel that the mesh is well adapted near the solid–liquid front and following the
istorted shape of the convection cell in the liquid phase. In the middle panel, we notice the high velocity values defining the convection
ell, waving in the liquid phase. The final panel of Fig. 10 shows the temperature field, with the solid phase well identified in blue. This
tructure of the flow is in a very good agreement with that reported by Nourgaliev et al. [55].

G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492 17
5.3. Natural convection of water and water freezing

In this section we consider phase-change systems using water. Since pure water exhibits non-linear density variation for T < 10.2 ◦C,
with a maximum at Tm = 4.0293 ◦C, the Boussinesq force becomes non-linear. Convection and freezing of water are therefore interesting
cases to test the flexibility of our Toolbox to deal with additional non-linear terms. We used the following density-temperature formula
suggested by Gebhart and Mollendorf [49]:

ρ(T) = ρm
(
1 − w |T − Tm|

q) , (31)

with ρm = 999.972 [kg/m3], w = 9.2793 · 10−6 [(◦C)−q], and q = 1.894816.
Hence, the buoyancy term fB = g(ρref − ρ)/ρref in (1) is not any more linear and becomes after scaling:

fB(θ) =
Ra

Pr Re2
1

βδT
ρ(θf) − ρ(θ)

ρ(θf)
, (32)

where β = (1/ρm) (dρ/dT) is the thermal expansion coefficient taking the value β = 6.91 · 10−5 [(K)−1] [61].
We simulate a differentially heated square cavity filled with liquid pure distilled water. This problem was investigated experimentally

and numerically by Giangi et al. [16], Kowalewski and Rebow [15], Michalek and Kowalewski [62]. The non-dimensional parameters
describing the problem are (see [62] for physical details): Ra = 2.518084 · 106, Pr = 6.99 and Ste = 0.125.

5.3.1. Natural convection of water
The initial temperature is linearly distributed in the square cavity, with a hot temperature Th = 10 ◦C at the left wall and a cold

temperature Tc = Tf = 0 ◦C at the right wall. The temperature field and the streamlines of the steady state are presented in Fig. 11a.
The isoline θ = θm, corresponding to the line of maximum density is represented by a dashed line. Due to the anomalous thermal
variation of water density, two recirculating zones are formed in the flow: a lower (abnormal) recirculation in the vicinity of the cold
wall where θ < θm and an upper (normal) one where the density decreases with temperature (θ > θm).

Fig. 11. Natural convection of water in a differentially heated cavity. Non-dimensional temperature θ at steady state. (a) Two-dimensional temperature field and
streamlines showing the two recirculating zones. (b) Temperature profile along the horizontal central line. Comparison with the numerical results of Michalek and
Kowalewski [62].

A more precise comparison with previously published results is shown in Fig. 11b. The obtained temperature profile θ (x) along the
horizontal central line of the cavity (y = 0.5) is in good agreement with the numerical results of Michalek and Kowalewski [62]. Their
results were obtained with finite-volume and finite-difference codes (FLUENT and FRECONV3V).

5.3.2. Water freezing
We finally consider the difficult case of water freezing in a square cavity. The initial state for this computation is the convection

steady pattern in the cavity presented in Fig. 11. The freezing starts by dropping smoothly the temperature of the cold right wall from
Tc = 0 ◦C to Tc = −10 ◦C. The new boundary condition on the right cold wall is imposed by setting a very thin layer of δx = 0.01, with
constant temperature T = Tc and zero velocity.

Figure 12 shows the flow configuration at dimensionless time t = 1.61. The left panel depicts the domain composition and the
adapted mesh following two lines of interest: the solid–liquid interface T = 0 and the line T = Tm separating the two recirculating
zones (see the middle panel of the same figure). The metrics used for adaptivity were computed from the two components of the
velocity, the temperature and a P1 tanh-function φ(T) ‘‘tracking’’ the value Tm. To reduce the impact of the interpolation on the global
accuracy we used both φ(T n) and φ(T n+1) in the adaptivity procedure (see also [17]). This adaptivity strategy allowed us to accurately
capture the structure and the extent of the two recirculating zones, features that are difficult to obtain with fixed meshes (discrepancies
in numerical results are described in [15,16,62]). In the right panel of Fig. 12 we superimpose the experimental image from [15] with
our numerical results for the same physical time tϕ = 2340 [s]. The position of the solid–liquid interface and the flow pattern in
the liquid phase correspond very well qualitatively to the experimental image. The simulation was performed with a small time step
(δt = 10−2

≈ 15 [s]). Note from Table 1 that the computational time for this case is more than reasonable (23 min using 1 thread and
only 13 min with 6 MPI processes).

18 G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492

r
a
t
o

s
t
b
P
f
o
s
u

Fig. 12. Freezing of pure water. Simulated configuration at t = 1.61. Adapted finite-element mesh and subdomains used for the domain decomposition and parallel
computing with 6 MPI processes (left panel). Velocity vectors in the liquid phase (central panel). Comparison with the experimental image from [15]; the thick red
line represents the solid–liquid interface computed with the present method (right panel).

6. 3D parallel numerical results

All the 2D benchmarks presented in the previous section could be simulated in 3D using the second provided Toolbox
PCM_Toolbox_DDM_3D. To avoid an excessively long paper, we shortly present in this section only the following selection of 3D cases: (i)
the steady natural convection of air in a cubic cavity with Ra = 106 (Section 6.1), (ii) the melting of a phase-change material (Section 6.2),
within a cubic (Section 6.2.1) or cylindrical domain (Section 6.2.2), and (iv) the convection and the freezing of pure water in a cube
(Section 6.3). Running parameters for these cases are summarized in Tables 4 and 5, for computations using P1 and P2 finite elements,
espectively. Again, to make these simulations accessible with fast-running jobs in a batch-queuing system, we gave priority to jobs with
reasonable number of MPI processes (less than 400). We used 4GB memory for each CPU-Core node for all simulations, excepting for
he case PCM-Case #3 with 9 heated tubes, when 9GB of memory were necessary. In the subsequent sections, we present the results
btained with P2 finite elements for the temperature, since these simulations are more challenging. The results using P1 elements

for the temperature are provided in the Supplemental Material http://lmrs-num.math.cnrs.fr/2020CPCP2.html containing images and
animations of the cases presented in this section.

Table 4
Running parameters for 3D simulations: total CPU time, maximum number of degrees of freedom (dof) after mesh adaptivity, number of MPI processes, total number
of time steps, maximum CPU time necessary for mmg library to adapt the 3D mesh and ratio between the CPU time for adapting the mesh and the CPU time for
a complete time step. All computations were performed using P1 finite elements for the temperature. All computations were performed using a parallel computer
(CRIANN Computing Center and MATRICS platform) based on Intel Broadwell E5-2680 v4 @ 2.40 GHz (14 cores per socket) architecture with two sockets per node
and 128 GB of DDR4 2400 MHz RAM. An Intel Omnipath 100 Gb/s low latency network was used for communications.

Case CPU time Max of dof MPI procs. Number of
time steps

Max mmg CPU
time

Ratio CPU
adapt/CPU time
step

Unsteady NC of air, Ra = 104 00:55:21 249 625 6 23 9 s 6%
Unsteady NC of air, Ra = 106 01:14:49 725 097 56 50 20 s 19%
PCM-Case #1 07:42:32 3,299 661 224 80 53 s 16%
PCM-Case #3: 1 tube 16:02:31 3,809 760 224 401 65 s 17%
PCM-Case #3: 4 tubes 13:29:23 8,813 510 280 151 150 s 20%
PCM-Case #3: 9 tubes 10:37:44 14,860 117 364 71 262 s 24%
Cycle of a PCM 13:06:26 2,150 052 224 382 36 s 32%
NC of water 00:59:26 3,701 916 112 20 62 s 20%
Unsteady NC of water 06:39:40 5,492 302 112 37 76 s 14%
Water freezing 1–10:11:55 4,448 031 224 296 53 s 21%

6.1. Natural convection of air in a cubic cavity

We go back to the benchmark of natural convection of air described in Section 5.1 and add the third dimension in space. We thus
imulate the thermally driven cubic cavity [0, 1]3, filled with air. The temperature is now fixed on the left (cold) wall surface and
he right (hot) wall surface. All the other lateral surfaces are adiabatic (∂T/∂n = 0). No-slip walls are applied for the velocity on all
oundary surfaces. We show in Fig. 13 the final (steady) flow configuration for Ra = 106 obtained using the time-dependent solver with
2 finite-elements for the temperature. The mesh is mainly adapted following the boundary layers of the ascending and descending
lows (Fig. 13a), which are clearly visible when representing the 3D velocity vectors (Fig. 13b). A quantitative assessment of the quality
f the simulation is offered in Fig. 13c and d, comparing our results with those reported by Wakashima and Saitoh [63]. These authors
olved the vorticity-stream function formulation of the Navier–Stokes equations using a fourth–order finite difference scheme and a
niform mesh of 1203 grid nodes.

http://lmrs-num.math.cnrs.fr/2020CPCP2.html

G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492 19

m
c

6

Table 5
Same caption as for Table 4, but with all computations performed using P2 finite elements for the temperature.

Case CPU time Max of dof MPI procs. Number of
time steps

Max mmg CPU
time

Ratio CPU
adapt/CPU time
step

Unsteady NC of air, Ra = 104 01:12:38 313 769 6 23 9 s 5%
Unsteady NC of air, Ra = 106 01:22:33 913 057 56 50 20 s 18%
PCM-Case #1 08:05:24 4,871 640 224 80 66 s 13%
PCM-Case #3: 1 tube 21:49:27 3,919 350 224 401 49 s 12%
PCM-Case #3: 4 tubes 15:49:16 9,224 708 280 151 128 s 17%
PCM-Case #3: 9 tubes 13:23:43 14,981 519 364 71 210 s 17%
Cycle of a PCM 11:28:47 2,709 371 224 382 32 s 27%
NC of water 01:10:08 4,700 233 112 20 63 s 17%
Unsteady NC of water 07:14:19 6,049 784 112 35 82 s 12%
Water freezing 1–16:14:44 5,107 229 224 296 58 s 17%

Fig. 13. Natural convection of air in a cubic differentially heated cavity (Ra = 106) computed with P2 finite elements for the temperature. (a) Adapted mesh with a
aximum number of degrees of freedom of 913 057. (b) 3D velocity vector field in the final (steady) state. Temperature contour-lines in the central section of the
ube (y = 0.5): results of Wakashima and Saitoh [63] (c) and present results (d). Parallel computation with 56 MPI processes.

.2. Melting of 3D phase-change materials

We simulate in this section 3D configurations of PCMs, in cubic or cylindrical geometries.

20 G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492

a

a
s
P
b
w

Fig. 14. Melting of a cubic PCM [53] computed with P2 finite elements for the temperature. Configuration at t = 80.1, computed using 224 MPI processes with
P2 finite elements for the temperature. (a) Adapted finite-element mesh with a maximum number of degrees of freedom ndof = 4, 871 640. (b) Illustration of the
dapted mesh in the center of the domain. (c) 3D velocity vectors and isosurface θ = 0 representing the liquid–solid interface. (d) Position of the interface in the

central plane (y = 0.5): comparison between 2D and 3D simulations (both using P2 finite elements for the temperature).

6.2.1. Melting of a cubic octadecane PCM
We extend the 2D simulations presented in Section 5.2.1 to a 3D cubic domain Ω = [0, 1]3. We impose cold dimensionless

temperature θc = −0.01 at x = 1 (right wall), hot temperature θh = 1 at x = 0 (left wall), and a homogeneous Neumann boundary
condition at the remaining walls. A Dirichlet boundary condition u = 0 is prescribed for all surfaces defining ∂Ω . The temperature
distribution and the corresponding adapted mesh at t = 80.1 is shown in Fig. 14a. The blue region denotes the solid phase. A zoom of
the mesh in the mid-plane, at t = 80.1, refined along the iso-surface θ = 0, is shown in Fig. 14b. As the heating progresses, the natural
convection intensifies enough to have a pronounced influence on the shape of the interface. The temperature difference between the
hot wall and the solid PCM induces a clockwise recirculation of the flow in the melted PCM (Fig. 14c). The shape of the liquid–solid
interface at t = 80.1 is also displayed in Fig. 14c, showing a non-uniform melting front receding from the top to the bottom of the
domain. The position of the solid–liquid interface at the mid-plane for 2D and 3D configurations is plotted in Fig. 14d. Differences
between 2D and 3D results are not visible in this mid-plane. Three-dimensional effects are more important near the lateral walls, as
explained in [64].

6.2.2. Melting of a cylindrical PCM with inner heated tubes
We simulate the melting of a cylindrical PCM with inner heated tubes, as in Section 5.2.3. The 3D domain is now a horizontal

cylinder of radius R = 1 and length L = 0.25. In addition to the 2D configuration, we impose the following boundary conditions. For
the temperature, a Dirichlet boundary condition (θ = θh = 1) is applied at the inner tubes and a Neumann boundary condition (∂θ

∂n = 0)
t the outer sections of the cylinder. For the velocity, a homogeneous Dirichlet boundary condition (u = 0) is prescribed on the lateral
urfaces of external and inner cylinders and a symmetry boundary condition is imposed on the ending sections of the cylinder. The
CM is initially solid and when the melting process starts, a liquid layer grows around the heated tubes and expands toward the lateral
oundary. A slice in the adapted mesh, the velocity vector field, and temperature iso-surfaces are illustrated in Fig. 15 for configurations
ith one, four, and nine heated tubes. The mesh is adapted along the melting front and in the boundary layers around the heated tubes.

G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492 21
Fig. 15. Melting of cylindrical PCM computed with P2 finite elements for the temperature. Adapted finite-element mesh (left panels), 3D velocity vector field (middle)
and temperature iso-surfaces (right). Configurations with one inner heated tube (time instant t = 1.591, simulation with 224 MPI processes and a maximum number
of degrees of freedom ndof = 3, 919 350), four tubes (t = 0.621, 280 processes and max ndof = 9, 224 708) and nine tubes (t = 0.331, 364 processes and max ndof
= 14, 981 519).

Adaptivity is efficient even when the solid–liquid interface touches the outer wall (see left panels). Counter rotating flows are observed
at the left and right parts of the cylindrical domain (middle panels). Iso-surfaces of temperature shown in the right panels also confirm
that the evolution of the liquid flows keeps the symmetry of the configuration.

6.3. Natural convection of water and water freezing

We simulate in this final section the challenging case of the natural convection of water and the ice formation inside a differentially
heated cubic cavity. The dimensionless parameters are the same that those used in Section 5.3.2. For the natural convection of water,
the vertical walls at x = 0 and x = 1 are isothermal and have different temperatures θh = 1 and θc = 0, respectively. The remaining
walls are adiabatic. A homogeneous Dirichlet boundary condition u = 0 is applied on all walls. The fluid is initially at rest and the
temperature is linearly distributed from the cold to the hot wall (see Fig. 16).

Given the anomalous thermal variation of water density, we also adapted the 3D mesh along θ = 0.4 to capture correctly the flow
structure. The temperature distribution and the corresponding adapted mesh for the steady (time-independent) state computation are
shown in Fig. 16a. The blue region identifies the cold water trapped by the abnormal fluid recirculation and the red region the hot fluid
driven by the upper clockwise circulation. A cut in the mesh following the mid-plane (Fig. 16b) shows the internal structure of the
mesh. Smaller tetrahedra are clearly observed in the vicinity of the walls and between the two counter-rotating circulation patterns.
Figure 16c shows that the three-dimensional evolution of the flow (spiral movement of the fluid along the walls) affects the topology
of the iso-surface θ = 0.4.

Giangi et al. [16] analyzed three-dimensional effects in both convection and freezing of water and they noted that only the flow
in the symmetry plane is similar to the two-dimensional flow. They pointed out that no-slip velocity and adiabatic thermal boundary

22 G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492

s
f

c
o
c
K
w

i
a

Fig. 16. Natural convection of water in a differentially heated cubic cavity computed with P2 finite elements for the temperature. (a) Temperature distribution and
3D adapted finite element mesh at the steady state. (b) Illustration of the adapted mesh in the center of the domain. (c) Velocity vector field and temperature
iso-surface θ = 0.4. (d) Profile of the vertical velocity along the z−direction at the mid-plane (y = 0.5) and x = 0.93. Comparison with the numerical benchmark
uggested by Kowalewski and Rebow [15] (symbols). Simulations using 112 MPI processes with P2 for the temperature and a maximum number of degrees of
reedom ndof = 4, 700 233.

onditions at the side walls enhance three-dimensional effects near the walls. To validate this observation, we plot in Fig. 16d the profile
f the vertical velocity along the z direction, at x = 0.93 and passing through the velocity saddle point, where normal and abnormal
onvection streams collide in the vicinity of the cold wall. We compare both 2D and 3D simulations with 3D results of Michalek and
owalewski [62] (symbols), obtained with a finite-difference code. 3D (red solid line) profile agrees well with the benchmark solution
ith a maximum difference of 3%.
For the water freezing case, the simulation starts from the steady solution shown in Fig. 16. The cold temperature at the right wall

s suddenly dropped from θc = 0 to θc = −1 (corresponding to physical temperature Tc = −10 oC). Ice starts to form at the cold wall
nd expands toward the left wall. The temperature distribution and the adapted mesh at the final time tϕ = 2340 [s] (t = 1.61) are

displayed in Figs. 17a and 17b.
When compared to the natural convection case (Fig. 16), the mesh is also adapted along a second moving front represented by the

solid–liquid interface (iso-surface θ = 0 shown in Fig. 17c). For the identification of flow structures during the ice formation, Fig. 17c
shows the 3D velocity vectors, the iso-surface θ = 0.4 along the anomalous density variation, and the phase-change front at time instant
t = 1.61. The effect of the secondary flow (see [64]) is visible from the curved shape of the iso-surface θ = θm in the transverse y
direction. We note, however, that the shape of the solidification front is almost 2D. The buoyancy-induced fluid motion in the abnormal
recirculation region is too weak to influence the solid front. Finally, the superimposition of the experimental image of Kowalewski and
Rebow [15] and the current simulation give good agreement for the location of the solid–liquid interface. Differences come mainly from
the fact that the undercooling phenomenon during the solidification stage is not taken into account in our physical model.

6.4. Scalability test for 3D parallel computations

We present the results for both strong and weak scalability tests. We simulate the 3D unsteady natural convection of air with
6
Ra = 10 presented in Section 6.1. Mesh adaptation is used only for the strong scalability test.

G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492 23

S
2
r

R
s
a

t
(
5
a
f
1

Fig. 17. Freezing of pure water in a 3D cubical cavity computed with P2 finite elements for the temperature. (a) Temperature distribution and adapted mesh at time
instant t = 1.61. (b) Cut through the adapted mesh at mid-plane. (c) 3D velocity vectors in the liquid phase and temperature iso-surfaces θ = 0.4 and θ = 0. (d)
uperimposition of the interface obtained in the present simulation (red thick line) on the experimental image of Kowalewski and Rebow [15]. Simulations using
24 MPI processes with P2 for the temperature and a max of degrees of freedom 5, 107 229. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

Fig. 18. Weak scalability test for 3D simulations: simulation time (left), efficiency (center) and speed-up (right) for a number of processes ranging from 8 to 256.

The CPU is Intel Broadwell E5-2680 v4 @ 2.40 GHz (14 cores per socket). Each node has two sockets and 128 GB of DDR4 2400 MHz
AM. They communicate through Intel Omnipath 100Gb/s low latency network. First, we report the simulation time, the efficiency and
peed-up for the weak (Fig. 18) and strong scalability tests (Fig. 19). Assuming a perfect speed-up for 8 cores, we obtained for 256 cores
speed-up of approximately 122.56 (weak) and 70.6 (strong), resulting in an efficiency of 47.9%(weak) and 27.6%(strong).
In Figs. 20 (weak) and 21 (strong), we report the computational time for the main steps of the computational algorithm, namely

he mesh adaptation, the matrix construction and the resolution of the linear system. For 8 cores, the mesh adaptation takes 221.9s
strong), the construction of the matrix 83.5s (strong) and 0.96s (weak) and the resolution of the linear system 4866.9s (strong) and
52.1s (weak). For 256 cores, the mesh adaptation takes 223.0s (strong), the construction of the matrix 76.4s (strong) and 6.91s (weak)
nd the resolution of the linear system 422.2s (strong) and 893.5s (weak). It results from this analysis that the only step that benefits
rom the parallelization is the resolution of the linear system. The speed-up of the resolution of the linear system is 78.9 (strong) and
58.2 (weak), resulting in an efficiency of 36.0% (strong) and 61,8% (weak).

24 G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492

7

s
s
t
C
i
m

a
e
w
d
p
d
u

i
f
p
p
a
P
w
R
t

p
f
r
t

Fig. 19. Strong scalability test for 3D simulations: simulation time (left), efficiency (center) and speed-up (right) for a number of processes ranging from 8 to 256.

Fig. 20. Weak scalability test: stacked timings of the main steps of the computation using 8 (left), 24 (center) and 112 (right) processes.

Fig. 21. Strong scalability test: stacked timings of the main steps of the computation using 8 (left), 24 (center) and 112 (right) processes.

. Summary and conclusions

The main advantage of the new toolbox distributed with this paper is to enable parallel computing of liquid–solid phase-change
ystems in 2D or 3D complex geometries. The physical model implemented in the software is one of the most accurate existing for
uch systems: the enthalpy-porosity model, based on the incompressible Navier–Stokes equations with Boussinesq approximation for
hermal effects. This model captures all the characteristics of the flow developing in the liquid phase, dominated by convection. Using a
arman–Kozeny-type penalty term, added to the momentum equations to bring progressively the velocity to zero into the solid, results
n a single-domain formulation of equations for both liquid and solid phases. We proved that this single-domain enthalpy-porosity
odel is well adapted to the use of Schwarz domain decomposition methods (DDM), and, consequently, to parallel computing.
The numerical method was implemented using FreeFem++, a free software offering multiple advantages to easily implement
finite-element algorithm. The key ingredients of the implemented method are: (i) a second order accuracy in space (P2 finite
lements for velocity and temperature, P1 for the pressure) and time (Gear scheme); (ii) the use of an adaptive finite element method
ith regularized functions representing the variation of thermodynamic properties at the solid–liquid interface, (iii) a fully implicit
iscretization with a Newton algorithm for solving the non-linear system of equations, and (iv) a parallel final algorithm using automatic
artitioners (Scotch or Metis) and the recent library ffddm that makes available in FreeFem++state-of-the-art scalable Schwarz
omain decomposition methods. Mesh adaptivity is an essential ingredient of the toolbox and a new algorithm was implemented
sing external remeshing tools (mmg) for 3D configurations.
We presented careful validations of the toolbox by considering parallel 2D and 3D computations of well-known benchmark cases of

ncreasing difficulty: natural convection of air, natural convection of water, melting or solidification of a phase-change material, and,
inally, a water freezing case. For 2D configurations, parallel computations with the present toolbox using modest resources (6 MPI
rocesses) can bring a CPU gain factor between 2 and 3, when compared to previous sequential algorithms [3]. But the most significant
rogress brought by the new toolbox is to make affordable well-resolved 3D computations with mesh adaptivity, which are hardly
ccessible with sequential algorithms. The efficiency of the toolbox in 3D was demonstrated by simulating difficult cases (melting of a
CM, water freezing) in simple (cubic) or complex geometries (cylindrical with inner tubes). To facilitate its use, the toolbox is provided
ith separate folders containing all the necessary files (parameters, restart files) necessary to run all the cases described in the paper.
eady-made scripts and layouts allow the user to generate the figures presented in this paper with newly generated data after running
he programs. Validation data sets from experiments or previous publications are included in these layouts.

The present parallel approach can be easily tested and adapted to address other computational challenges related to different
hysical or mathematical models in this field. For instance, other possible choices for the finite-element discretization could be tested
or the implementation of the algorithm presented in this paper. To prove the versatility of the toolbox, we illustrate in Fig. 22 the
esults obtained using the mini-element introduced by Arnold, Brezzi and Fortin [see35,65]. This is the simplest element for Stokes-
ype problems, offering inf–sup stability and global linear convergence. Compared to the Taylor–Hood element, in the mini-element

G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492 25

o
t
d

d
F
d

r
c
t
c
a
f
s

M

D

i

A

C
w
F

Fig. 22. Melting of a PCM. Results obtained using the mini-element (Pb
1 for the velocity and P1 for the pressure). 2D simulation: (a) Temperature field and position

f the interface at t = 80.1; the red dashed line is the experimental result of Okada [53]. (b) Comparison with the Taylor–Hood discretization (red dashed lines) for
he position of the interface at t = 40.1 and t = 79.1. 3D simulation: (c) Temperature field and adapted mesh at t = 80.1. (d) Comparison with the Taylor–Hood
iscretization (red dashed line) for the position of the interface at t = 79.1 in the central plane (y = 0.5). To be compared with Figs. 5 and 14.

iscretization velocities are piecewise Pb
1 (P1-bubble), while pressure is still piecewise P1. Since the mini-element already exists in

reeFem++ the only necessary change in the distributed scripts is to declare the unknowns of the problem accordingly to the syntax
iscussed in Section 3.1: fespace Wh(Th,[P1b,P1b,P1b,P1,P1]).
Figure 22 shows that, for the test case of the melting of a PCM presented in Section 5.2.1 (2D case) and 6.2.1 (3D case), the results are

emarkably accurate when compared to those obtained using the Taylor–Hood discretization. The CPU time is reduced by 20% for the 2D
omputation and 42% for the 3D simulation with the same number of MPI processes (6 for 2D and 224 for 3D). However, knowing that
he mini-element offers a minimal accuracy for the velocity field, a careful assessment of this type of discretization in computing more
omplicated cases (with several convection rolls and complex dynamics in the fluid part) is necessary. Also, the efficiency of the mesh
daptivity in this case has to be carefully investigated to obtain a robust algorithm (as in the present toolbox using the Taylor–Hood
inite element). This topic will be addressed in a future contribution, together with the possibility to enrich the physical model for the
olidification process.
Supplementary images and movies depicting the dynamics of some cases simulated in this paper are provided as Supplemental

aterial at http://lmrs-num.math.cnrs.fr/2020CPCP2.html.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

This project was co-financed by the European Union with the European regional development funds and by the Normandy Regional
ouncil, France via the M2NUM (ERDF, HN0002081) and M2SiNUM (ERDF, 18P03390/18E01750/18P02733) projects. Part of this work
as performed using computing resources of CRIANN (Centre Régional Informatique et d’Applications Numériques de Normandie,
rance) and MATRICS plateform (Amiens, France).

http://lmrs-num.math.cnrs.fr/2020CPCP2.html

26 G. Sadaka, A. Rakotondrandisa, P.-H. Tournier et al. / Computer Physics Communications 257 (2020) 107492
References

[1] F. Agyenim, N. Hewitt, P. Eames, M. Smyth, Renew. Sustain. Energy Rev. 14 (2) (2010) 615–628.
[2] S. Kalnæs, B. Jelle, Energy Build. 94 (2015) 150–176.
[3] A. Rakotondrandisa, G. Sadaka, I. Danaila, Comput. Phys. Comm. 253 (2020) 107188.
[4] A.D. Brent, V.R. Voller, K.J. Reid, Numer. Heat Transfer 13 (1988) 297–318.
[5] F. Stella, M. Giangi, in: A. Kowalewski, D. Gobin (Eds.), Phase Change with Convection: Modelling and Validation, Vol. 21, Springer, 2004, pp. 9–272.
[6] R.T. Tenchev, J.A. Mackenzie, T.J. Scanlon, .M.T. Stickland, Int. J. Heat Fluid Flow 26 (4) (2005) 597–612.
[7] K. Luo, F.-J. Yao, H.-L. Yi, H.-P. Tan, Appl. Therm. Eng. 86 (2015) 238–250.
[8] W. Gong, K. Johannes, F. Kuznik, Commun. Comput. Phys. 17 (5) (2015) 1201–1224.
[9] A. Kowalewski, D. Gobin, Phase Change with Convection: Modelling and Validation, Springer, 2004.

[10] N. Hannoun, V. Alexiades, T.Z. Mai, Numer. Heat Transfer B 44 (3) (2003) 253–276.
[11] N. Hannoun, V. Alexiades, T.Z. Mai, Internat. J. Numer. Methods Fluids 48 (11) (2005) 1283–1308.
[12] Y. Belhamadia, A.S. Kane, A. Fortin, Int. J. Numer. Anal. Model. 3 (2) (2012) 192–206.
[13] P. Angot, C.-H. Bruneau, P. Fabrie, Numer. Math. 81 (4) (1999) 497–520.
[14] B. Favier, J. Purseed, L. Duchemin, J. Fluid Mech. 858 (2019) 437–473.
[15] T.A. Kowalewski, M. Rebow, Int. J. Comput. Fluid Dyn. 11 (1999) 193–210.
[16] M. Giangi, T.A. Kowalewski, F. Stella, E. Leonardi, Comput. Assist. Mech. Eng. Sci. 7 (2000) 321–342.
[17] Y. Belhamadia, A. Fortin, E. Chamberland, J. Comput. Phys. 194 (1) (2004) 233–255.
[18] Y. Belhamadia, A. Fortin, E. Chamberland, J. Comput. Phys. 201 (2004) 753–770.
[19] I. Danaila, R. Moglan, F. Hecht, S. Le Masson, J. Comput. Phys. 274 (2014) 826–840.
[20] Y. Belhamadia, A. Fortin, T. Briffard, Numer. Heat Transfer A 76 (4) (2019) 179–197.
[21] A. Zimmerman, J. Kowalski, in: M. Schäfer, M. Behr, B. Wohlmuth (Eds.), Recent Advances in Computational Engineering, ICCE 2017, in: Lecture Notes in

Computational Science and Engineering, vol. 124, Springer, 2018, pp. 177–197.
[22] P.-H. Tournier, F. Nataf, P. Jolivet, Ffddm online documentation, 2019, http://doc.freefem.org/documentation/ffddm.
[23] F. Pellegrini, J. Roman, High-Performance Computing and Networking, Vol. 49, Springer, 1996, pp. 3–498.
[24] G. Karypis, V. Kumar, SIAM J. Sci. Comput. 20 (1) (1998) 359–392.
[25] V. Dolean, P. Jolivet, F. Nataf, An Introduction to Domain Decomposition Methods: Algorithms, Theory and Parallel Implementation, SIAM, 2015.
[26] C. Dapogny, C. Dobrzynski, P. Frey, J. Comput. Phys. 262 (2014) 358–378.
[27] V.R. Voller, M. Cross, N.C. Markatos, Int. J. Numer. Methods Eng. 24 (1987) 271–284.
[28] Y. Cao, A. Faghri, W.S. Chang, Int. J. Heat Mass Transfer 32 (7) (1989) 1289–1298.
[29] A.C. Kheirabadi, D. Groulx, Proceedings of CHT-15, ICHMT International Symposium on Advances in Computational Heat Transfer, Ichmt Digital Library Online.

Begel House Inc, 2015.
[30] R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, 1983.
[31] V. Girault, P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Verlag, Berlin, 1986.
[32] A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin and Heidelberg, 1994.
[33] R. Aldbaissy, F. Hecht, G. Mansour, T. Sayah, Calcolo 55 (4) (2018) 44.
[34] J. Woodfield, M. Alvarez, B. Gamez-Vargas, R. Ruiz-Baier, J. Comput. Appl. Math. 360 (2019) 117–137.
[35] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Verlag, 1991.
[36] D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications, Springer Verlag, 2013.
[37] C. Taylor, P. Hood, Comput. & Fluids 1 (1973) 73–100.
[38] F. Hecht, O. Pironneau, A.L. Hyaric, K. Ohtsuke, FreeFem++ (manual), 2007, www.freefem.org.
[39] F. Hecht, J. Numer. Math. 20 (2012) 251–266.
[40] I. Danaila, F. Hecht, J. Comput. Phys. 229 (2010) 6946–6960.
[41] G. Vergez, I. Danaila, S. Auliac, F. Hecht, Comput. Phys. Commun. 209 (2016) 144–162.
[42] Y. Zhang, I. Danaila, Appl. Math. Model. 37 (2013) 4809–4824.
[43] H. Borouchaki, M.J. Castro-Diaz, P.L. George, F. Hecht, B. Mohammadi, 5th Inter. Conf. on Numerical Grid Generation in Computational Field Simulations, Mississipi

State Univ, 1996.
[44] M. Castro-Diaz, F. Hecht, B. Mohammadi, Internat. J. Numer. Methods Fluids 25 (2000) 475–491.
[45] F. Hecht, B. Mohammadi, AIAA Paper, Vol. 97, 1997, pp. 0859.
[46] P.L. George, H. Borouchaki, Delaunay Triangulation and Meshing, Hermès, Paris, 1998.
[47] P.J. Frey, P.L. George, Maillages, Hermès, Paris, 1999.
[48] B. Mohammadi, O. Pironneau, Applied Shape Design for Fluids, Oxford Univ. Press, 2000.
[49] B. Gebhart, J. Mollendorf, Deep Sea Res. 24 (1977) 831–848.
[50] P Le Quéré, Comput. Fluids 20 (1991) 24–41.
[51] S. Wang, A. Faghri, T.L. Bergman, Int. J. Heat Mass Transfer 53 (2010) 1986–2000.
[52] Z. Ma, Y. Zhang, Int. J. Numer. Methods Heat Fluid Flow 16 (11) (2006) 204–225.
[53] M. Okada, Int. J. Heat Mass Transfer 27 (1984) 2057–2066.
[54] O. Bertrand, B. Binet, H. Combeau, S. Couturier, Y. Delannoy, D. Gobin, M. Lacroix, M. Le Quéré, J. Mencinger, et al., Int. J. Therm. Sci. 38 (1) (1999) 5–26.
[55] R. Nourgaliev, H. Luo, B. Weston, A. Anderson, S. Schofield, T. Dunn, J.-P. Delplanque, J. Comput. Phys. 305 (2016) 964–996.
[56] D. Gobin, P. Le Quéré, Comput. Assist. Mech. Eng. Sci. 7 (3) (2000) 289–306.
[57] J.A. Dantzig, Internat. J. Numer. Methods Engrg. 28 (8) (1989) 1769–1785.
[58] P. Le Quéré, D. Gobin, Int. J. Therm. Sci. 38 (7) (1999) 595–600.
[59] M.M. Cerimele, D. Mansutti, F. Pistella, Comput. & Fluids 31 (4) (2002) 437–451.
[60] F. Giangi, M. Stella, Numer. Heat Transfer A 38 (2) (2000) 193–208.
[61] T.J. Scanlon, M.T. Stickland, Int. J. Heat Mass Transfer 47 (2004) 429–436.
[62] T. Michalek, T.A. Kowalewski, Task Q. 7 (3) (2003) 389–408.
[63] S. Wakashima, T. Saitoh, Int. J. Heat Mass Transfer 47 (4) (2004) 853–864.
[64] K.W.P.A. Nikrityuk, IOP Conference Series: Materials Science and Engineering, Vol. 27, IOP Publishing, 2012, 012054.
[65] D.N. Arnold, F. Brezzi, M. Fortin, Calcolo 21 (1984) 337–344.

http://refhub.elsevier.com/S0010-4655(20)30231-9/sb1
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb2
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb3
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb4
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb5
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb6
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb7
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb8
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb9
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb10
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb11
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb12
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb13
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb14
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb15
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb16
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb17
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb18
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb19
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb20
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb21
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb21
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb21
http://doc.freefem.org/documentation/ffddm
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb23
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb24
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb25
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb26
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb27
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb28
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb29
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb29
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb29
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb30
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb31
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb32
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb33
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb34
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb35
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb36
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb37
http://www.freefem.org
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb39
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb40
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb41
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb42
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb43
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb43
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb43
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb44
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb46
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb47
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb48
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb49
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb50
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb51
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb52
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb53
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb54
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb55
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb56
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb57
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb58
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb59
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb60
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb61
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb62
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb63
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb64
http://refhub.elsevier.com/S0010-4655(20)30231-9/sb65

	Parallel finite-element codes for the simulation of two-dimensional and three-dimensional solid–liquid phase-change systems with natural convection
	Introduction
	Navier–Stokes-Boussinesq equations and enthalpy-porosity model
	Numerical method
	Finite-element formulation
	Domain decomposition method
	Mesh adaptivity

	Description of the programs
	Program architecture
	Input parameters
	Outputs

	2D parallel simulations
	Natural convection of air
	Melting or solidification of a phase-change material (PCM)
	PCM-case 1: Melting of an octadecane PCM in a square cavity
	PCM-Case 2: Melting of an octadecane PCM with high Rayleigh number
	PCM-Case 3: Melting of cylindrical PCM with inner heated tubes
	PCM-Case 4: Melting of gallium in a rectangular cavity
	PCM-Case 5: Solid crust formation in a highly distorted domain

	Natural convection of water and water freezing
	Natural convection of water
	Water freezing

	3D parallel numerical results
	Natural convection of air in a cubic cavity
	Melting of 3D phase-change materials
	Melting of a cubic octadecane PCM
	Melting of a cylindrical PCM with inner heated tubes

	Natural convection of water and water freezing
	Scalability test for 3D parallel computations

	Summary and conclusions
	Declaration of competing interest
	Acknowledgments
	References

