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We present a finite element toolbox for the computation of Bogoliubov-de Gennes modes used to assess the 
linear stability of stationary solutions of the Gross-Pitaevskii (GP) equation. Applications concern one (single 
GP equation) or two-component (a system of coupled GP equations) Bose-Einstein condensates in one, two 
and three dimensions of space. An implementation using the free software FreeFem++ is distributed with 
this paper. For the computation of the GP stationary (complex or real) solutions we use a Newton algorithm 
coupled with a continuation method exploring the parameter space (the chemical potential or the interaction 
constant). Bogoliubov-de Gennes equations are then solved using dedicated libraries for the associated eigenvalue 
problem. Mesh adaptivity is proved to considerably reduce the computational time for cases implying complex 
vortex states. Programs are validated through comparisons with known theoretical results for simple cases and 
numerical results reported in the literature.

Program summary

Program Title: FFEM_BdG_toolbox.zip

CPC Library link to program files: https://doi .org /10 .17632 /dgypyc34gb .1
Licensing provisions: Apache 2.0

Programming language: FreeFem++ (v 4.12) free software (www .freefem .org)

Nature of problem: The software computes Bogoliubov-de Gennes (BdG) complex modes of Bose-Einstein 
condensates described by the Gross-Pitaevskii (GP) equation. BdG equations are obtained by linearizing the 
GP equation (or the system of coupled GP equations) around a stationary solution. Obtained BdG modes are used 
to assess on the stability of stationary states.

Solution method: Stationary states of the GP equation are obtained by a Newton algorithm. Parameter space 
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captured accurately, BdG modes are computed by solving the associated eigenvalue problem with the ARPACK 
library. Complex eigenvalues and eigenvectors are computed and stored. The wave function is discretized by 
P2 (piece-wise quadratic) Galerkin triangular (in 2D) or tetrahedral (in 3D) finite elements. Mesh adaptation 
is implemented to reduce the computational time. Examples are given for stationary states in one- and two-
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1. Introduction

Since their first observation [1,2], Bose-Einstein condensates have 
become a powerful experimental framework for the study of waves and 
excitations in superfluids and nonlinear systems. The study of wave re-

lated structures (solitons, vortices) and their stability is an active area 
of research, and many efforts have been devoted to the developments of 
new experimental techniques for the creation and the study of new ex-

cited states. We can mention the use of rotation [3,4], imprinting tech-

niques manipulating the phase of the wave function [5,6], counterflows 
techniques [7], the use of anisotropic potentials [8] or multicomponent 
BEC settings [9]. A large variety of wave or vortex-related states could 
be thus obtained. Basic examples refer to single vortex lines (with I-, 
U- or S- shape) in rotating BEC [10], vortex rings and one-dimensional 
solitons. More complex states with multiple vortex rings, vortex stars, 
hopfions and solitons can be created [11–13]. In multicomponent BECs, 
dark-bright [14] and dark-antidark [15] states can be also obtained.

The main application of the programs presented in this paper is the 
study of the stability of such solitary waves or vortex states that are 
theoretically or numerically found as stationary solutions to the Gross-

Pitaevskii (GP) equation [16,17]. The linearization of the GP equation 
around a given stationary solution results in the Bogoliubov-de Gennes 
(BdG) system of equations [18]. Solving the BdG eigenvalue problem 
provides linear modes, for which their stability could be studied. The 
present toolbox thus contains two distinct parts: the computation of 
stationary solutions of the GP equation (or a system of coupled GP equa-

tions) and the computation of complex eigenvalues and modes for the 
associated BdG system.

Concerning the computation of stationary states of the GP equation, 
a large variety of discretization methods were suggested in the open 
literature: spectral methods [19–21], finite-elements [22,23] or finite-

differences [24–29]. Programs written in Fortran [19,24], C [25,26], 
Matlab [20,26,21,28], FreeFem++ [23] or C and Fortran with OpenMP 
[29] have been shared. All these works use a common approach to the 
problem, which is to find the stationary states of the GP equation under 
the constraint of the total mass conservation (i.e. the L2-norm of the 
wave function is fixed). When studying the stability of excitations in 
the BdG framework, another approach is commonly adopted: the chem-

ical potential is used as a convenient parameter to explore all possible 
states (and bifurcations) and thus the total mass varies from one state 
to another. This second approach has been already applied with finite 
elements [15,30,14,31], finite differences [14,13,12] or spectral meth-

ods [13] and will be used in this work. To solve the BdG eigenvalue 
problem, specialized libraries are generally used: ARPACK [32], SLEPc
[33] or FEAST [34]. Such libraries offer the flexibility to be easily inter-

faced with different types of discretization, since only final matrices of 
the eigenvalue problem are needed. A mathematical study of the BdG 
equation with numerical comparisons between spectral and finite dif-

ference discretizations has been recently reported in [35].

To the best of our knowledge, FACt [Fluctuations in Atomic Con-

densates, 36] is the only publicly accessible code for the BdG problem. 
It considers thermal excitations of the BECs at non-zero temperatures 
by solving the BdG equation in two component BECs with a pseudo-

spectral method. The present FreeFem++ toolbox uses a different (PDE-

oriented) formulation of the problem and has the advantage to hide 
all technicalities related to the implementation of the finite-element 
method and the interface with eigenvalue libraries (such as ARPACK) 
[37]. The user can thus focus on the physical and mathematical model, 
and eventually on the numerical algorithm solving the problem. The 
high level programming language offered in FreeFem++ and the syntax 
close to mathematical formulations make the implementation of numer-

ical algorithms very easy. Finite elements algorithms were successfully 
used to solve the GP equation [38,23] or the BdG problem [15] and 
recently to identify vortices in a quantum field [39]. Another advan-

tage of the present toolbox is to use mesh adaptivity to reduce the mesh 
2

size and the computational time. Solving the BdG problem for complex 
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cases becomes thus possible using personal computers. The computed 
BdG modes could be further used as initial conditions for starting real-

time dynamics simulations using the time-dependent GP equation. The 
outputs of this toolbox could thus be used with any available code for 
the time-dependent GP equation. A large variety of such codes exists in 
the CPC library [e.g. 24–26,28,40,29].

The structure of the paper is as follows. In Sect. 2, we introduce the 
GP and BdG models. Sections 3 and 4 describe the numerical meth-

ods used for the computation the stationary states and BdG modes. 
We present various benchmarks used for the validation of our codes 
in Sects. 5 and 6. The architecture of the programs and a description of 
parameter and output files are given in Sect. 7. Finally, we summarize 
the main features of the toolbox and present some possible extensions 
in Sect. 8.

2. The Gross-Pitaevskii model and Bogoliubov-de Gennes 
equations

2.1. The Gross-Pitaevskii equation

In the zero temperature limit, the Gross-Pitaevskii equation de-

scribes the time-evolution of the complex-valued macroscopic wave 
function 𝜓 ∶ →ℂ, with  ∈R𝑑 the domain of the 𝑑-dimensional con-

densate (𝑑 = 1, 2, 3):

𝑖ℏ
𝜕𝜓

𝜕𝑡
= − ℏ2

2𝑚
∇2𝜓 + 𝑉trap𝜓 + 𝑔|𝜓|2𝜓, (1)

where 𝑉trap(𝒙) is the external trapping potential, ℏ the reduced Planck 
constant and 𝑚 the atomic mass. The nonlinear term models the inter-

action between atoms, and for 𝑑 = 3 (3D condensate) 𝑔 = 4𝜋ℏ2𝑎𝑠
𝑚

, with 
𝑎𝑠 the scattering length. We consider the case of harmonic trapping po-

tentials:

𝑉trap(𝒙) =
𝑚

2

(
𝜔2

𝑥
𝑥2 +𝜔2

𝑦
𝑦2 +𝜔2

𝑧
𝑧2
)
, (2)

where 𝜔𝑥, 𝜔𝑥, 𝜔𝑥 are trapping frequencies. In several BEC experiments, 
the ratio between trapping frequencies justifies the so-called dimension-

reduction [41,42] and the description of condensates with one- (𝑑 = 1) 
or two-dimensional (𝑑 = 2) GP equation. For example, in experiments 
reported in [15] the BEC is confined in a highly elongated, cigar-shaped 
harmonic trap with frequencies (𝜔𝑥, 𝜔𝑦, 𝜔𝑧) = 2𝜋(1.4, 176, 174) Hz; the 
100:1 aspect ratio ensures effectively one-dimensional dynamics in BEC. 
For 𝑑 = 1 or 2, the nonlinear interaction constant 𝑔 is specified accord-

ing to the dimension reduction.

The atomic density 𝑛(𝒙) = |𝜓(𝒙)|2 vanishes outside the condensate 
due to the trapping, which implies that homogeneous Dirichlet bound-

ary conditions should be imposed for the wave function (𝜓 = 0 on 𝜕). 
The corresponding GP energy is:

(𝜓) = ∫


(
ℏ2

2𝑚
|∇𝜓(𝒙, 𝑡)|2 + 𝑉trap(𝒙)|𝜓(𝒙, 𝑡)|2 + 𝑔

2
|𝜓(𝒙, 𝑡)|4)𝑑𝒙, (3)

and the total number of atoms:

𝑁(𝜓) = ∫


𝜓𝜓 𝑑𝒙 = ∫


|𝜓|2𝑑𝒙, (4)

where 𝜓 denotes the complex conjugate.

Stationary solutions to the GP equation (1) are obtained by imposing 
the form

𝜓(𝒙, 𝑡) = 𝜙(𝒙)𝑒−
𝑖

ℏ
𝜇𝑡
, (5)

with 𝜇 the chemical potential. The stationary wave function 𝜙 is then 
solution of the stationary GP equation:

2

− ℏ

2𝑚
∇2𝜙+ 𝑉trap𝜙+ 𝑔|𝜙|2𝜙 = 𝜇𝜙. (6)
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Note that from (5) we infer that |𝜓|2 = |𝜙|2 and thus 𝑁(𝜙) =𝑁(𝜓) and 
(𝜓) = (𝜙). The chemical potential is related to the number of atoms 
by the relation:

𝜇 = 1
𝑁(𝜙)

⎛⎜⎜⎝(𝜙) +
𝑔

2 ∫


|𝜙|4𝑑𝒙⎞⎟⎟⎠ . (7)

In this work, we compute stationary solutions for fixed values of 
the chemical potential 𝜇. Branches of solutions are followed by con-

tinuation on 𝜇. To catch such branches, two limits associated to the 
value of 𝜇 can be considered as initial condition. In the case of low 
density (corresponding to a small number of particles), the nonlin-

ear term in (1) can be neglected to obtain the linear GP equation. In 
the case of an harmonic potential (2), 𝜓 can then be described as an 
eigenstate of the quantum harmonic oscillator. Using a separation of 
variables, these eigenstates can be written as a product of Hermite and 
Laguerre polynomials or spherical harmonics, depending on the dimen-

sion and the coordinate system. As an example, for the 2D BEC with 
trapping potential (2) with 𝜔𝑥 = 𝜔𝑦 = 𝜔⟂, the eigenstates formulated 
in Cartesian coordinates are |𝑘, 𝑙⟩ ∝ 𝐻𝑘(

√
𝜔⟂𝑥)𝐻𝑙(

√
𝜔⟂𝑦)𝑒

− 1
2𝜔⟂(𝑥2+𝑦2), 

where 𝐻𝑘, 𝐻𝑙 are Hermite polynomials; 𝑘 and 𝑙 index the eigenstates 
and correspond to the number of cuts in the condensate along the 𝑥 and 
𝑦 axes respectively. Solutions in the linear limit corresponding to vari-

ous exited states of the condensate have been analysed in many studies 
[e.g. 11,30].

The other limit is the Thomas-Fermi limit, associated to large values 
of 𝜇. In this case, the kinetic energy becomes negligible when compared 
to the nonlinear term. The stationary GP equation (6) reduces to:

𝜇𝜙 = 𝑉trap𝜙+ 𝑔|𝜙|2𝜙, (8)

which gives an analytical expression for the atomic density:

𝑛TF = |𝜓TF|2 = 1
𝑔
(𝜇 − 𝑉trap)+. (9)

2.2. The Bogoliubov-de Gennes equation

The Bogoliubov-de Gennes model is based on the linearisation of (1)

assuming that:

𝜓(𝒙, 𝑡) = (𝜙(𝒙) + 𝛿𝜙(𝒙, 𝑡))𝑒−
𝑖

ℏ
𝜇𝑡
, (10)

where 𝜙(𝒙) is a stationary state satisfying Eq. (6) and 𝛿𝜙 a small pertur-

bation. Inserting (10) in (1), we obtain, after neglecting second order 
terms in 𝛿𝜙, an evolution equation for the perturbation 𝛿𝜙:

𝑖ℏ
𝜕𝛿𝜙

𝜕𝑡
=𝛿𝜙− 𝜇𝛿𝜙+ 2𝑔|𝜙|2𝛿𝜙+ 𝑔𝜙2𝛿𝜙, (11)

where we denoted by

 ≡ − ℏ2

2𝑚
∇2 + 𝑉trap, (12)

the linear part of the Hamiltonian. Considering perturbations of the 
form

𝛿𝜙(𝒙, 𝑡) =𝐴(𝒙)𝑒−𝑖𝜔𝑡 +𝐵(𝒙)𝑒𝑖𝜔𝑡, (13)

we obtain, after separating terms in 𝑒−𝑖𝜔𝑡 and 𝑒𝑖𝜔̄𝑡, the Bogoliubov-de 
Gennes (BdG) system of equations [18,43]:( − 𝜇 + 2𝑔|𝜙|2 𝑔𝜙2

−𝑔𝜙
2

−( − 𝜇 + 2𝑔|𝜙|2)
)(

𝐴

𝐵

)
= ℏ𝜔

(
𝐴

𝐵

)
. (14)

Note that the BdG equation (14) is a linear eigenvalue problem, since 𝜙
is fixed and  is a linear real operator. The present toolbox computes, 
for a given complex stationary state 𝜙 ∈ℂ, solutions (𝜔, 𝐴, 𝐵) to the BdG 
equation (14), with 𝜔 denoting complex eigenvalues and (𝐴, 𝐵) complex 
3

eigenvectors.
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The following properties of the BdG eigenvalue problem can be ob-

tained by elementary manipulations and will be useful to check the 
accuracy of calculations:

1. If (𝜔, 𝐴, 𝐵) is solution to (14), then (−𝜔, 𝐵, 𝐴) is also a solution. This 
property is obtained by taking the conjugate of (14).

2. 𝜔 = 0 is always an eigenvalue (the zero-energy mode). It can be 
checked that the full solution is (0, 𝛼𝜙, −𝛼𝜙), 𝛼 ∈ ℂ [18] and rep-

resents, following (13), a time invariant (small) excitation 𝛿𝜙 =
(𝛼 − 𝛼)𝜙. This corresponds in (10) to a gauge transformation and, 
consequently, it does not add any physical excitation to the system.

3. 𝜔 is also an eigenvalue. If 𝜙 ∈R, it is easy to see from (14) that 
(𝜔, 𝐴, 𝐵) is also a solution. For the general case of 𝜙 ∈ ℂ this prop-

erty also holds and it can be proved using the Hamiltonian nature 
of the problem [43].

4. If we multiply the first equation of the system (14) by 𝐴 and the 
second by 𝐵, integrate over the domain  and then sum the two 
equations, we obtain that:

𝛿 = ℏ𝜔∫


(|𝐴|2 − |𝐵|2)𝑑𝒙 ∈R, (15)

which is generally presented in the literature in the equivalent form 
[44,18,35]:

(𝜔−𝜔)∫


(|𝐴|2 − |𝐵|2)𝑑𝒙 = 0. (16)

From (15) or (16) we can draw two main observations that are im-

portant to interpret the results of the BdG analysis:

1. If the BdG modes are normalized such that ∫
(|𝐴|2 − |𝐵|2)𝑑𝒙 ≠ 0, 

then we infer from (16) that only real eigenvalues are possible. 
These correspond to elementary excitations. A mathematical study 
of the properties of the BdG modes when 𝜔 and 𝜙 are real is offered 
in [35]. Moreover, the quantity 𝛿 in (15) represents the energy 
difference between the stationary 𝜓 and the perturbed state 𝜓 +
𝛿𝜓 [18]. The Krein signature 𝐾 was introduced as the sign of the 
energy difference, 𝐾 = 𝑠𝑖𝑔𝑛(𝛿) [45]. If 𝐾 > 0 for all modes, then 
𝜙 is the global minimum of the energy, i.e. the ground state. On 
the contrary, if there exists a mode with 𝐾 < 0, then the excitation 
reduces the energy of the system and the stationary state is thus 
energetically unstable, i.e. excited state (or local minimum of the 
energy).

2. If ∫
(|𝐴|2 − |𝐵|2)𝑑𝒙 = 0, complex eigenvalues 𝜔 =𝜔𝑟 + 𝑖𝜔𝑖 are pos-

sible. If 𝜔𝑖 ≠ 0, then the BdG mode is dynamically unstable.

2.3. Two-component BECs

Mixtures of BECs have been experimentally created, either by con-

sidering different atomic species or by using hyperfine states of a single 
isotope. We consider two-component BECs described by the following 
system of two coupled GP equations for wave functions 𝜓1 and 𝜓2:

⎧⎪⎪⎨⎪⎪⎩
𝑖ℏ

𝜕𝜓1
𝜕𝑡

=
(
− ℏ2

2𝑚
∇2 + 𝑉trap + 𝑔11|𝜓1|2 + 𝑔12|𝜓2|2)𝜓1,

𝑖ℏ
𝜕𝜓2
𝜕𝑡

=
(
− ℏ2

2𝑚
∇2 + 𝑉trap + 𝑔21|𝜓1|2 + 𝑔22|𝜓2|2)𝜓2.

(17)

Coefficients 𝑔11 and 𝑔22 represent interactions between atoms of the 
same species while 𝑔12 and 𝑔21 describe interactions between different 
species. The total energy is the sum of the GP energy of each compo-

nent:

(𝜓1, 𝜓2) =
2∑(

ℏ2 |∇𝜓𝑖|2 + 𝑉trap |𝜓𝑖|2 + 1
2∑

𝑔𝑖𝑗 |𝜓𝑖|2|𝜓𝑗 |2)𝑑𝒙. (18)
∫
 𝑖=1 2𝑚 2

𝑗=1
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Similarly to the one component case, stationary states are sought as 
𝜓1 = 𝜙1𝑒

− 𝑖

ℏ
𝜇1𝑡 and 𝜓2 = 𝜙2𝑒

− 𝑖

ℏ
𝜇2𝑡, with chemical potentials 𝜇1 and 𝜇2. 

We obtain the following system of equations:

⎧⎪⎪⎨⎪⎪⎩
𝜇1𝜙1 =

(
− ℏ2

2𝑚
∇2 + 𝑉trap + 𝑔11|𝜙1|2 + 𝑔12|𝜙2|2)𝜙1,

𝜇2𝜙2 =
(
− ℏ2

2𝑚
∇2 + 𝑉trap + 𝑔21|𝜙1|2 + 𝑔22|𝜙2|2)𝜙2.

(19)

Note that in most of published experimental and theoretical studies, 
the trapping potential is generally the same for the two components. 
If necessary, different expressions for 𝑉trap can be easily implemented 
in the provided scripts (see next section). This also applies for systems 
with different atomic masses (𝑚1 ≠ 𝑚2). For the sake of simplicity, we 
present in this paper the case with identical trapping potentials and 
masses for the two components.

For the linear stability analysis we consider perturbations of the 
form:{

𝛿𝜙1(𝒙) =𝐴(𝒙)𝑒−𝑖𝜔𝑡 +𝐵(𝒙)𝑒𝑖𝜔𝑡,

𝛿𝜙2(𝒙) = 𝐶(𝒙)𝑒−𝑖𝜔𝑡 +𝐷(𝒙)𝑒𝑖𝜔𝑡,
(20)

and obtain the BdG equations for the two-component case:

𝑀

⎛⎜⎜⎜⎜⎝
𝐴

𝐵

𝐶

𝐷

⎞⎟⎟⎟⎟⎠
= ℏ𝜔

⎛⎜⎜⎜⎜⎝
𝐴

𝐵

𝐶

𝐷

⎞⎟⎟⎟⎟⎠
, (21)

where the matrix 𝑀 can be presented in the form:

𝑀 =

⎛⎜⎜⎜⎜⎝
𝑀11 𝑔11𝜙

2
1 𝑔12𝜙1𝜙2 𝑔12𝜙1𝜙2

−𝑔11𝜙1
2

𝑀22 −𝑔12𝜙1𝜙2 −𝑔12𝜙1𝜙2
𝑔21𝜙1𝜙2 𝑔21𝜙1𝜙2 𝑀33 𝑔22𝜙

2
2

−𝑔21𝜙1𝜙2 −𝑔21𝜙1𝜙2 −𝑔22𝜙2
2

𝑀44

⎞⎟⎟⎟⎟⎠
, (22)

with:

⎧⎪⎪⎨⎪⎪⎩

𝑀11 = − 𝜇1 + 2𝑔11|𝜙1|2 + 𝑔12|𝜙2|2,
𝑀22 = −𝑀11,

𝑀33 = − 𝜇2 + 𝑔21|𝜙1|2 + 2𝑔22|𝜙2|2,
𝑀44 = −𝑀33.

(23)

2.4. Scaling

Various forms of scaling are used in the literature (see [46] for a uni-

fied form of the GP scaling). To allow one to switch between different 
forms, we first introduce a reference (trapping) frequency 𝜔𝑠 which will 
define a time scale 𝑡𝑠 and a length scale 𝑥𝑠 (the corresponding harmonic 
oscillator length):

𝑡𝑠 =
1
𝜔𝑠

, 𝑥𝑠 =
√

ℏ

𝑚𝜔𝑠

. (24)

We then introduce a reference value 𝜓𝑠 for the wave function and scale 
variables as:

𝒙→
𝒙

𝑥𝑠

, 𝑡→
𝑡

𝑡𝑠
, 𝜓 →

𝜓

𝜓𝑠

. (25)

The same scaling is used for the stationary state 𝜙. The dimensionless 
form of the time-dependent stationary GP equation (1) becomes:

𝑖
𝜕𝜓

𝜕𝑡
= −1

2
∇2𝜓 +𝐶trap𝜓 + 𝛽|𝜓|2𝜓, (26)

with

1 𝑔𝜓2
𝑠

4

𝐶trap(𝒙) =
ℏ𝜔𝑠

𝑉trap(𝒙), 𝛽 =
ℏ𝜔𝑠

. (27)
Computer Physics Communications 294 (2024) 108948

Note that the coefficient 1∕2 in front of the Laplacian in Eq. (26) comes 
from the choice (24) for the reference length, since all terms were di-

vided by the quantity (of the dimension of an energy):

ℏ𝜔𝑠 =𝑚𝑥2
𝑠
𝜔2

𝑠
= ℏ2

𝑚𝑥2
𝑠

. (28)

From (2) we infer that the non-dimensional trapping potential takes the 
form:

𝐶trap(𝑥, 𝑦, 𝑧) =
1
2

(
𝜔2

𝑥
𝑥2 +𝜔2

𝑦
𝑦2 +𝜔2

𝑧
𝑧2
)
, where 𝜔𝑥,𝑦,𝑧 →

𝜔𝑥,𝑦,𝑧

𝜔𝑠

. (29)

Similarly, the stationary GP equation (6) becomes:

−1
2
∇2𝜙+𝐶trap𝜙+ 𝛽|𝜙|2 = 𝜇𝜙, where 𝜇 →

𝜇

ℏ𝜔𝑠

. (30)

Finally, the BdG system of equations takes the non-dimensional form:( − 𝜇 + 2𝛽|𝜙|2 𝑔𝜙2

−𝑔𝜙
2

−( − 𝜇 + 2𝛽|𝜙|2)
)(

𝐴

𝐵

)
= 𝜔

(
𝐴

𝐵

)
, (31)

where  ≡ −1
2∇

2 + 𝐶trap is dimensionless, 𝜔 → 𝜔∕𝜔𝑠 and 𝐴 → 𝐴∕𝜓𝑠, 
𝐵 →𝐵∕𝜓𝑠.

In the two component case, the wave functions are scaled as 𝜓1 →
𝜓1
𝜓𝑠,1

and 𝜓2 →
𝜓2
𝜓𝑠,2

, and the system (19) for the stationary state becomes:

⎧⎪⎨⎪⎩
𝜇1𝜙1 =

(
−1
2
∇2 +𝐶trap + 𝛽11|𝜙1|2 + 𝛽12|𝜙2|2)𝜙1,

𝜇2𝜙2 =
(
−1
2
∇2 +𝐶trap + 𝛽21|𝜙1|2 + 𝛽22|𝜙2|2)𝜙2,

(32)

where 𝛽𝑖𝑗 →
𝑔𝑖𝑗

ℏ𝜔𝑠
𝜓2

𝑠,𝑗
, 𝜇𝑖 →

𝜇𝑖

ℏ𝜔𝑠
. It follows that the non-dimensional 

form of the BdG system for the two-component BEC is obtained from 
(21)-(23), by replacing coefficients 𝑔𝑖𝑗 with 𝛽𝑖𝑗 and using the non-

dimensional form of .

We provide with this toolbox example scripts (files Tools_

scaling/phys_to_adim_1comp.edp and Tools_scaling/phys_

to_adim_2comp.edp) that compute non-dimensional parameters 
from physical values corresponding to several published experimen-

tal studies. These programs could guide the user in making the link 
between parameters of existing experiments and non-dimensional pa-

rameters used in this contribution (and, more generally, in theoretical 
studies).

3. Computing stationary solutions of the GP equation

3.1. Newton method for a single component BEC

Stationary solutions of Eq. (30) are computed using a Newton 
method. Considering that 𝜙 = 𝜙𝑟 + 𝑖𝜙𝑖, we obtain the following system 
of equations after separating real and imaginary parts:

⎧⎪⎨⎪⎩
−1
2
∇2𝜙𝑟 +𝐶trap𝜙𝑟 + 𝛽𝑓 (𝜙𝑟,𝜙𝑖)𝜙𝑟 − 𝜇𝜙𝑟 = 0,

−1
2
∇2𝜙𝑖 +𝐶trap𝜙𝑖 + 𝛽𝑓 (𝜙𝑟,𝜙𝑖)𝜙𝑖 − 𝜇𝜙𝑖 = 0,

(33)

where 𝑓 (𝜙𝑟, 𝜙𝑖) implements the non-linear (interaction) term. Here 
𝑓 (𝜙𝑟, 𝜙𝑖) = |𝜙|2 = 𝜙2

𝑟
+ 𝜙2

𝑖
, but the method is described (and pro-

grammed) for a general expression of 𝑓 that can be easily changed in 
the toolbox.

We consider homogeneous Dirichlet boundary conditions for 𝜙𝑟 and 
𝜙𝑖, i.e. 𝜙𝑟 = 𝜙𝑖 = 0 on 𝜕, and set the classical Sobolev spaces 𝑉 =
𝐻1

0 () for 𝜙𝑟 and 𝜙𝑖. The weak formulation of (33) can be thus written 
as follows: find (𝜙𝑟, 𝜙𝑖) ∈ 𝑉 × 𝑉 = 𝑉 2, such that for all test functions 

(𝑣𝑟, 𝑣𝑖) ∈ 𝑉 2:
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⎧⎪⎪⎨⎪⎪⎩
𝑟(𝜙𝑟,𝜙𝑖, 𝑣𝑟) =∫


(𝐶trap − 𝜇)𝜙𝑟𝑣𝑟+∫


1
2
∇𝜙𝑟 ⋅∇𝑣𝑟+∫


𝛽𝑓 (𝜙𝑟,𝜙𝑖)𝜙𝑟𝑣𝑟 = 0,

𝑖(𝜙𝑟,𝜙𝑖, 𝑣𝑖) =∫


(𝐶trap − 𝜇)𝜙𝑖𝑣𝑖+∫


1
2
∇𝜙𝑖 ⋅∇𝑣𝑖+∫


𝛽𝑓 (𝜙𝑟,𝜙𝑖)𝜙𝑖𝑣𝑖 = 0.

(34)

Starting from an initial guess (𝜙0
𝑟
, 𝜙0

𝑖
), solution increments

𝑞 = 𝜙𝑘
𝑟
−𝜙𝑘+1

𝑟
, 𝑠 = 𝜙𝑘

𝑖
− 𝜙𝑘+1

𝑖
, 𝑘 ≥ 0, (35)

are computed using the Newton algorithm:

⎛⎜⎜⎜⎜⎝

(
𝜕𝑟

𝜕𝜙𝑟

)
𝜙𝑟=𝜙𝑘

𝑟 ,𝜙𝑖=𝜙𝑘
𝑖

(
𝜕𝑟

𝜕𝜙𝑖

)
𝜙𝑟=𝜙𝑘

𝑟 ,𝜙𝑖=𝜙𝑘
𝑖(

𝜕𝑖

𝜕𝜙𝑟

)
𝜙𝑟=𝜙𝑘

𝑟 ,𝜙𝑖=𝜙𝑘
𝑖

(
𝜕𝑖

𝜕𝜙𝑖

)
𝜙𝑟=𝜙𝑘

𝑟 ,𝜙𝑖=𝜙𝑘
𝑖

⎞⎟⎟⎟⎟⎠
(

𝑞

𝑠

)
=
(𝑟(𝜙𝑘

𝑟
,𝜙𝑘

𝑖
, 𝑣𝑟)𝑖(𝜙𝑘

𝑟
,𝜙𝑘

𝑖
, 𝑣𝑖)

)
, (36)

with the corresponding weak formulation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫


(𝐶trap − 𝜇)𝑞𝑣𝑟 + ∫


1
2
∇𝑞 ⋅∇𝑣𝑟

+ ∫


𝛽

(
𝜕𝑓

𝜕𝜙𝑟

(𝜙𝑘
𝑟
,𝜙𝑘

𝑖
)𝜙𝑘

𝑟
𝑞 + 𝜕𝑓

𝜕𝜙𝑖

(𝜙𝑘
𝑟
,𝜙𝑘

𝑖
)𝜙𝑘

𝑟
𝑠+ 𝑓 (𝜙𝑘

𝑟
,𝜙𝑘

𝑖
)𝑞
)

𝑣𝑟

= ∫


(𝐶trap − 𝜇)𝜙𝑘
𝑟
𝑣𝑟 + ∫



1
2
∇𝜙𝑘

𝑟
⋅∇𝑣𝑟 + ∫


𝛽𝑓 (𝜙𝑘

𝑟
,𝜙𝑘

𝑖
)𝜙𝑘

𝑟
𝑣𝑟,

∫


(𝐶trap − 𝜇)𝑠𝑣𝑖 + ∫


1
2
∇𝑠 ⋅∇𝑣𝑖

+ ∫


𝛽

(
𝜕𝑓

𝜕𝜙𝑟

(𝜙𝑘
𝑟
,𝜙𝑘

𝑖
)𝜙𝑘

𝑖
𝑞 + 𝜕𝑓

𝜕𝜙𝑖

(𝜙𝑘
𝑟
,𝜙𝑘

𝑖
)𝜙𝑘

𝑖
𝑠+ 𝑓 (𝜙𝑘

𝑟
,𝜙𝑘

𝑖
)𝑠
)

𝑣𝑖

= ∫


(𝐶trap − 𝜇)𝜙𝑘
𝑖
𝑣𝑖 + ∫



1
2
∇𝜙𝑘

𝑖
⋅∇𝑣𝑖 + ∫


𝛽𝑓 (𝜙𝑘

𝑟
,𝜙𝑘

𝑖
)𝜙𝑘

𝑖
𝑣𝑖.

(37)

Note that the metalanguage used in FreeFem++ enables the implemen-

tation of Eqs. (37) in a form very similar to mathematical formulae, 
which is appreciable to rapidly build bug-free numerical codes.

3.2. Newton method for a two-component BEC

For a two-component BEC, we solve the following system, obtained 
from (32) after separating real and imaginary parts for 𝜙1 = 𝜙1𝑟 + 𝑖𝜙1𝑖
and 𝜙2 = 𝜙2𝑟 + 𝑖𝜙2𝑖:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1
2
∇2𝜙1𝑟 + (𝐶trap − 𝜇1)𝜙1𝑟 + 𝛽11𝑓 (𝜙1𝑟,𝜙1𝑖)𝜙1𝑟 + 𝛽12𝑓 (𝜙2𝑟,𝜙2𝑖)𝜙1𝑟 = 0,

−1
2
∇2𝜙1𝑖 + (𝐶trap − 𝜇1)𝜙1𝑖 + 𝛽11𝑓 (𝜙1𝑟,𝜙1𝑖)𝜙1𝑖 + 𝛽12𝑓 (𝜙2𝑟,𝜙2𝑖)𝜙1𝑖 = 0,

−1
2
∇2𝜙2𝑟 + (𝐶trap − 𝜇2)𝜙2𝑟 + 𝛽21𝑓 (𝜙1𝑟,𝜙1𝑖)𝜙2𝑟 + 𝛽22𝑓 (𝜙2𝑟,𝜙2𝑖)𝜙2𝑟 = 0,

−1
2
∇2𝜙2𝑖 + (𝐶trap − 𝜇2)𝜙2𝑖 + 𝛽21𝑓 (𝜙1𝑟,𝜙1𝑖)𝜙2𝑖 + 𝛽22𝑓 (𝜙2𝑟,𝜙2𝑖)𝜙2𝑖 = 0.

(38)

We consider again homogeneous Dirichlet boundary conditions, i.e.
𝜙1𝑟 = 𝜙1𝑖 = 𝜙2𝑟 = 𝜙2𝑖 = 0 on 𝜕. The weak formulation of (38) can be 
written as follows: find (𝜙1𝑟, 𝜙1𝑖, 𝜙2𝑟, 𝜙2𝑖) ∈ 𝑉 4, such that for all test func-
5

tions (𝑣1𝑟, 𝑣1𝑖, 𝑣2𝑟, 𝑣2𝑖) ∈ 𝑉 4:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1𝑟 =∫


(𝐶trap − 𝜇1)𝜙1𝑟𝑣1𝑟 + ∫


1
2
∇𝜙1𝑟 ⋅∇𝑣1𝑟

+ ∫


(𝛽11𝑓 (𝜙1𝑟, 𝜙1𝑖) + 𝛽12𝑓 (𝜙2𝑟, 𝜙2𝑖))𝜙1𝑟𝑣1𝑟 = 0,

1𝑖 =∫


(𝐶trap − 𝜇1)𝜙1𝑖𝑣1𝑖 + ∫


1
2
∇𝜙1𝑖 ⋅∇𝑣1𝑖

+ ∫


(𝛽11𝑓 (𝜙1𝑟, 𝜙1𝑖) + 𝛽12𝑓 (𝜙2𝑟, 𝜙2𝑖))𝜙1𝑖𝑣1𝑖 = 0,

2𝑟 =∫


(𝐶trap − 𝜇2)𝜙2𝑟𝑣2𝑟 + ∫


1
2
∇𝜙2𝑟 ⋅∇𝑣2𝑟

+ ∫


(𝛽21𝑓 (𝜙1𝑟, 𝜙1𝑖) + 𝛽22𝑓 (𝜙2𝑟, 𝜙2𝑖))𝜙2𝑟𝑣2𝑟 = 0,

2𝑖 =∫


(𝐶trap − 𝜇2)𝜙2𝑖𝑣2𝑖 + ∫


1
2
∇𝜙2𝑖 ⋅∇𝑣2𝑖

+ ∫


(𝛽21𝑓 (𝜙1𝑟, 𝜙1𝑖) + 𝛽22𝑓 (𝜙2𝑟, 𝜙2𝑖))𝜙2𝑖𝑣2𝑖 = 0.

(39)

The Newton step for increments

𝑞1 = 𝜙𝑘
1𝑟 − 𝜙𝑘+1

1𝑟 , 𝑠1 = 𝜙𝑘
1𝑖 − 𝜙𝑘+1

1𝑖 , 𝑞2 = 𝜙𝑘
2𝑟 −𝜙𝑘+1

2𝑟 , 𝑠2 = 𝜙𝑘
2𝑖 −𝜙𝑘+1

2𝑖 ,

(40)

consists then in solving the following four equations:

∫


(𝐶trap − 𝜇1)𝑞1𝑣1𝑟 + ∫


1
2
∇𝑞1 ⋅∇𝑣1𝑟 + ∫


(𝛽11𝑓 (𝜙𝑘

1𝑟, 𝜙
𝑘
1𝑖) + 𝛽12𝑓 (𝜙𝑘

2𝑟, 𝜙
𝑘
2𝑖))𝑞1𝑣1𝑟

+ ∫


𝛽11

(
𝜕𝑓

𝜕𝜙𝑟

(𝜙𝑘
1𝑟, 𝜙

𝑘
1𝑖)𝜙

𝑘
1𝑟𝑞1 +

𝜕𝑓

𝜕𝜙𝑖

(𝜙𝑘
1𝑟, 𝜙

𝑘
1𝑖)𝜙

𝑘
1𝑟𝑠1

)
𝑣1𝑟

+ ∫


𝛽12

(
𝜕𝑓

𝜕𝜙𝑟

(𝜙𝑘
2𝑟, 𝜙

𝑘
2𝑖)𝜙

𝑘
1𝑟𝑞2 +

𝜕𝑓

𝜕𝜙𝑖

(𝜙𝑘
2𝑟, 𝜙

𝑘
2𝑖)𝜙

𝑘
1𝑟𝑠2

)
𝑣1𝑟

= ∫


(𝐶trap − 𝜇1)𝜙𝑘
1𝑟𝑣1𝑟 + ∫



1
2
∇𝜙𝑘

1𝑟 ⋅∇𝑣1𝑟

+ ∫


(𝛽11𝑓 (𝜙𝑘
1𝑟, 𝜙

𝑘
1𝑖) + 𝛽12𝑓 (𝜙𝑘

2𝑟, 𝜙
𝑘
2𝑖))𝜙

𝑘
1𝑟𝑣1𝑟,

(41)

∫


(𝐶trap − 𝜇1)𝑠1𝑣1𝑖 + ∫


1
2
∇𝑠1 ⋅∇𝑣1𝑖 + ∫


(𝛽11𝑓 (𝜙𝑘

1𝑟, 𝜙
𝑘
1𝑖) + 𝛽12𝑓 (𝜙𝑘

2𝑟, 𝜙
𝑘
2𝑖))𝑠1𝑣1𝑖

+ ∫


𝛽11

(
𝜕𝑓

𝜕𝜙𝑟

(𝜙𝑘
1𝑟, 𝜙

𝑘
1𝑖)𝜙

𝑘
1𝑖𝑞1 +

𝜕𝑓

𝜕𝜙𝑖

(𝜙𝑘
1𝑟, 𝜙

𝑘
1𝑖)𝜙

𝑘
1𝑖𝑠1

)
𝑣1𝑖

+ ∫


𝛽12

(
𝜕𝑓

𝜕𝜙𝑟

(𝜙𝑘
2𝑟, 𝜙

𝑘
2𝑖)𝜙

𝑘
1𝑖𝑞2 +

𝜕𝑓

𝜕𝜙𝑖

(𝜙𝑘
2𝑟, 𝜙

𝑘
2𝑖)𝜙

𝑘
1𝑖𝑠2

)
𝑣1𝑖

= ∫


(𝐶trap − 𝜇1)𝜙𝑘
1𝑖𝑣1𝑖 + ∫



1
2
∇𝜙𝑘

1𝑖 ⋅∇𝑣1𝑖

+ ∫


(𝛽11𝑓 (𝜙𝑘
1𝑟, 𝜙

𝑘
1𝑖) + 𝛽12𝑓 (𝜙𝑘

2𝑟, 𝜙
𝑘
2𝑖))𝜙

𝑘
1𝑖𝑣1𝑖 ,

(42)

∫


(𝐶trap − 𝜇2)𝑞2𝑣2𝑟 + ∫


1
2
∇𝑞2 ⋅∇𝑣2𝑟 + ∫


(𝛽22𝑓 (𝜙𝑘

2𝑟, 𝜙
𝑘
2𝑖) + 𝛽21𝑓 (𝜙𝑘

1𝑟, 𝜙
𝑘
1𝑖))𝑞2𝑣2𝑟

+ ∫


𝛽21

(
𝜕𝑓

𝜕𝜙𝑟

(𝜙𝑘
1𝑟, 𝜙

𝑘
1𝑖)𝜙

𝑘
2𝑟𝑞1 +

𝜕𝑓

𝜕𝜙𝑖

(𝜙𝑘
1𝑟, 𝜙

𝑘
1𝑖)𝜙

𝑘
2𝑟𝑠1

)
𝑣2𝑟

+ ∫


𝛽22

(
𝜕𝑓

𝜕𝜙𝑟

(𝜙𝑘
2𝑟, 𝜙

𝑘
2𝑖)𝜙

𝑘
2𝑟𝑞2 +

𝜕𝑓

𝜕𝜙𝑖

(𝜙𝑘
2𝑟, 𝜙

𝑘
2𝑖)𝜙

𝑘
2𝑟𝑠2

)
𝑣2𝑟

= ∫


(𝐶trap − 𝜇2)𝜙𝑘
2𝑟𝑣2𝑟 + ∫



1
2
∇𝜙𝑘

2𝑟 ⋅∇𝑣2𝑟

+ ∫


(𝛽21𝑓 (𝜙𝑘
1𝑟, 𝜙

𝑘
1𝑖) + 𝛽22𝑓 (𝜙𝑘

2𝑟, 𝜙
𝑘
2𝑖))𝜙

𝑘
2𝑟𝑣2𝑟,
(43)
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∫


(𝐶trap − 𝜇2)𝑠2𝑣2𝑖 + ∫


1
2
∇𝑠2 ⋅∇𝑣2𝑖 + ∫


(𝛽22𝑓 (𝜙𝑘

2𝑟, 𝜙
𝑘
2𝑖) + 𝛽21𝑓 (𝜙𝑘

1𝑟, 𝜙
𝑘
1𝑖))𝑠2𝑣2𝑖

+ ∫


𝛽21

(
𝜕𝑓

𝜕𝜙𝑟

(𝜙𝑘
1𝑟, 𝜙

𝑘
1𝑖)𝜙

𝑘
2𝑖𝑞1 +

𝜕𝑓

𝜕𝜙𝑖

(𝜙𝑘
1𝑟, 𝜙

𝑘
1𝑖)𝜙

𝑘
2𝑖𝑠1

)
𝑣2𝑖

+ ∫


𝛽22

(
𝜕𝑓

𝜕𝜙𝑟

(𝜙𝑘
2𝑟, 𝜙

𝑘
2𝑖)𝜙

𝑘
2𝑖𝑞2 +

𝜕𝑓

𝜕𝜙𝑖

(𝜙𝑘
2𝑟, 𝜙

𝑘
2𝑖)𝜙

𝑘
2𝑖𝑠2

)
𝑣2𝑖

= ∫


(𝐶trap − 𝜇2)𝜙𝑘
2𝑖𝑣2𝑖 + ∫



1
2
∇𝜙𝑘

2𝑖 ⋅∇𝑣2𝑖

+ ∫


(𝛽21𝑓 (𝜙𝑘
1𝑟, 𝜙

𝑘
1𝑖) + 𝛽22𝑓 (𝜙𝑘

2𝑟, 𝜙
𝑘
2𝑖))𝜙

𝑘
2𝑖𝑣2𝑖 .

(44)

Again, the implementation of Eqs. (41)-(44) with FreeFem++ is very 
similar to the mathematical formulation.

3.3. Finite element implementation with FreeFem++

The algorithms presented below are implemented using the free soft-

ware FreeFem++ [37]. We illustrate in this section the main principles 
of programming used in building the toolbox and the numerical settings 
for the BdG problem.

One of the main advantages offered by FreeFem++ is to program 
cumbersome formulae in a compact form, close to the mathematical 
formulation. For example, the system (37) is implemented in a Macro
(precisely BdG_1comp/A_macro/Macro_problem.edp) in which in-
tegral terms are easy to identify:

NewMacro problemGP

macro f(ur,ui) (ur^2 + ui^2)//

macro dfdur(ur,ui) (2.*ur)//

macro dfdui(ur,ui) (2.*ui)//

varf vGP([q,s],[vr,vi]) =

intN(Th,qforder=ord)((Ctrap - mu)*q*vr + .5*grad(q)’*
grad(vr)

+ (Ctrap - mu)*s*vi + .5*grad(s)’*grad(vi)

+ beta * (f(phir,phii)*q*vr + f(phir,phii)*s*vi)

+ beta * phir*vr*(dfdur(phir,phii)*q + dfdui(phir,phii

)*s)

+ beta * phii*vi*(dfdur(phir,phii)*q + dfdui(phir,phii

)*s))

+ intN(Th,qforder=ord)((Ctrap - mu)*phir*vr + .5*grad(

phir)’*grad(vr)

+ (Ctrap - mu)*phii*vi + .5*grad(phii)’*grad(vi)

+ beta * f(phir,phii) * (phir*vr + phii*vi))

BCGP;

EndMacro

Another advantage of this formulation is that it can be used for any 
dimension (𝑑 = 1, 2 or 3) and any available type of finite elements, by 
simply declaring these values in the files defining the computational 
case. For example, for the 1D dark-soliton test case (file BdG_1com-
p/INIT/1D_DS.inc):

macro dimension 1//

macro FEchoice P2//

These choices are then used in the main programs to define the 
finite-element spaces. For example, in FFEM_GP_1c_1D_2D_3D.edp:

func Pk = [FEchoice,FEchoice];

...

meshN Th; // Local mesh

fespace Wh(Th,FEchoice);

fespace Whk(Th,Pk);

...

Wh<complex> phi; // Wavefunction

Whk [q,s], [phir,phii];
6
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For the two-component BEC, the macro formulation of the Newton 
algorithm is similar to the previous one-component case and follows 
Eqs. (41)-(42)
(file BdG_2comp/A_macro/Macro_problem.edp):

NewMacro problemGP

macro f(ur,ui) (ur^2 + ui^2)//

macro dfdur(ur,ui) (2.*ur)//

macro dfdui(ur,ui) (2.*ui)//

varf vGP([q1,s1,q2,s2],[v1r,v1i,v2r,v2i])=

intN(Th,qforder=ord)(

1./2.*grad(q1)’*grad(v1r) + (Ctrap - mu1)*q1*v1r +

(beta11*f(phi1r,phi1i) + beta12*f(phi2r,

phi2i))*q1*v1r

+ beta11*(dfdur(phi1r,phi1i)*phi1r*q1 + dfdui(

phi1r,phi1i)*phi1r*s1)*v1r

+ beta12*(dfdur(phi2r,phi2i)*phi1r*q2 + dfdui(

phi2r,phi2i)*phi1r*s2)*v1r

+1./2.*grad(s1)’*grad(v1i) + (Ctrap - mu1)*s1*v1i

+ (beta11*f(phi1r,phi1i) + beta12*f(phi2r,

phi2i))*s1*v1i

+ beta11*(dfdur(phi1r,phi1i)*phi1i*q1 + dfdui(

phi1r,phi1i)*phi1i*s1)*v1i

+ beta12*(dfdur(phi2r,phi2i)*phi1i*q2 + dfdui(

phi2r,phi2i)*phi1i*s2)*v1i

+1./2.*grad(q2)’*grad(v2r) + (Ctrap - mu2)*q2*v2r

+ (beta22*f(phi2r,phi2i) + beta21*f(phi1r,

phi1i))*q2*v2r

+ beta22*(dfdur(phi2r,phi2i)*phi2r*q2 + dfdui(

phi2r,phi2i)*phi2r*s2)*v2r

+ beta21*(dfdur(phi1r,phi1i)*phi2r*q1 + dfdui(

phi1r,phi1i)*phi2r*s1)*v2r

+1./2.*grad(s2)’*grad(v2i) + (Ctrap - mu2)*s2*v2i

+ (beta22*f(phi2r,phi2i) + beta21*f(phi1r,

phi1i))*s2*v2i

+ beta22*(dfdur(phi2r,phi2i)*phi2i*q2 + dfdui(

phi2r,phi2i)*phi2i*s2)*v2i

+ beta21*(dfdur(phi1r,phi1i)*phi2i*q1 + dfdui(

phi1r,phi1i)*phi2i*s1)*v2i

)

+ intN(Th,qforder=ord)(

1./2.*grad(phi1r)’*grad(v1r) + (Ctrap - mu1)*phi1r

*v1r + (beta11*f(phi1r,phi1i) + beta12*f(

phi2r,phi2i))*phi1r*v1r

+ 1./2.*grad(phi1i)’*grad(v1i) + (Ctrap - mu1)*
phi1i*v1i + (beta11*f(phi1r,phi1i) + beta12*f

(phi2r,phi2i))*phi1i*v1i

+ 1./2.*grad(phi2r)’*grad(v2r) + (Ctrap - mu2)*
phi2r*v2r + (beta22*f(phi2r,phi2i) + beta21*f

(phi1r,phi1i))*phi2r*v2r

+ 1./2.*grad(phi2i)’*grad(v2i) + (Ctrap - mu2)*
phi2i*v2i + (beta22*f(phi2r,phi2i) + beta21*f

(phi1r,phi1i))*phi2i*v2i

)

BCGP;

EndMacro

Note that, since the expression of Ctrap is also defined as a macro, it 
is easy to change the scripts to implement a different trapping (Ctrap1
and Ctrap2) for the two components (corresponding to mu1 and

mu2).

For all programs in this toolbox, we use 𝑃2 (piece-wise quadratic) 
finite elements.

FreeFem++ also offers a fast mesh generator for 1D, 2D or 3D con-

figurations. The mesh (generically identified as Th) is made of segments 
in 1D, triangles in 2D and tetrahedrons in 3D. The initial solution is built 
specifically for each case as an approximation of the state we want to 

study (see Sects. 5 and 6). Newton iterations are stopped when one of
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two following criteria is satisfied:

‖‖‖‖‖
(

𝑞

𝑠

)‖‖‖‖‖∞ < 𝜖𝑞,
‖‖‖‖‖
(𝑟𝑖

)‖‖‖‖‖2 < 𝜖𝐹 . (45)

In practice, we use 𝜖𝑞 = 10−8 and 𝜖𝐹 = 10−16 and in all considered cases 
both criteria are satisfied simultaneously. To achieve convergence in 
the Newton algorithm, the choice of the solver for the linear system re-

sulting from (33) or (38) is very important. For 1D and 2D problems we 
solve the system with a direct LU method using the library MUMPS. For 
3D problems, we use a GMRES method, preconditioned by an incom-

plete LU factorization.

Branches of stationary solutions are followed by a continuation 
method on the parameter 𝜇0 ≤ 𝜇 ≤ 𝜇𝑓 . In practice, we start from a value 
𝜇0 for which the initial condition is sufficiently close to the stationary 
state and use this converged state as an initial guess for the Newton 
method with chemical potential 𝜇0 + 𝛿𝜇. The process is repeated until 
𝜇𝑓 is reached. This is especially useful when following states from the 
linear limit to high values of 𝜇. For the two-component case, the con-

tinuation is done first on 𝜇1 and 𝜇2 and then on the inter-component 
interactions 𝛽12 and 𝛽21.

An important tool in FreeFem++ is the adaptive mesh refinement, 
that considerably helps in reducing the computational time while keep-

ing a high degree of accuracy. The grid is refined in regions of high 
gradients and coarsened in low gradients regions. The mesh is adapted 
in 2D using the standard adaptmesh command of FreeFem++ which 
creates a new mesh adapted to the Hessian of the solution. The al-

gorithm implemented in the adaptmesh function modifies the inner 
product used in the automatic mesh generator to evaluate distance and 
volume [47–49]. Equilateral elements are thus constructed, accordingly 
to the new metric. The inner product is based on the evaluation of 
the Hessian  of the variables of the problem. For example, for a P1 
(piece-wise linear) finite-element discretization of a variable 𝜒 , the in-

terpolation error is bounded by:

𝜀 = |𝜒 −Πℎ𝜒|0 ≤ 𝑐 sup
𝑇∈ℎ

sup
𝑥,𝑦,𝑧∈𝑇

|(𝑥)|(𝑦− 𝑧, 𝑦− 𝑧), (46)

where Πℎ𝜒 is the P1 interpolate of 𝜒 , |(𝑥)| is the Hessian of 𝜒 at point 
𝑥 after being made positive definite. Using the Delaunay algorithm (e.g.
[50]) to generate a triangular mesh with edges close to the unit length 
in the metric  = ||

(𝑐𝜀) will result in an equally distributed interpola-

tion error 𝜀 over the edges of the mesh. Note that this algorithm is 
different from Adaptive Mesh Refinement (AMR) methods based on a 
topological representation of the computational mesh by a hierarchical 
structure consisting of oct-quad- and binary trees (e.g. [51]). The pre-

vious approach could be generalized for a vector variable 𝜒 = [𝜒1, 𝜒2]. 
After computing the metrics 1 and 2 for each variable, we define 
a metric intersection  =1 ∩2, such that the unit ball of  is in-

cluded in the intersection of the two unit balls of metrics 2 and 1
(for details, see the algorithm defined in [48]). For the stationary GP 
equation solved in this toolbox, we use the adaptive mesh refinement 
based on the intersection of three metrics computed from squared mod-

ulus, real and imaginary parts of the complex wave function (see also 
[38]).

In 3D, the adaptative mesh refinement is done through the libraries

mshmet and mmg [52] using similar algorithms. These libraries are di-

rectly linked to FreeFem++ . When using continuation, we adapt the 
mesh for different values of 𝜇. Mesh adaptation is mandatory for the 
complicated test cases, especially in 3D or for the two-component cases: 
using a refined mesh for the entire domain would lead to a large mem-
7

ory consumption and an excessively long computational time. Note that
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when adapting the finite element mesh, the user can set the values for 
ℎ𝑚𝑎𝑥 and ℎ𝑚𝑖𝑛, which are the maximum and, respectively, the minimum 
edge size of the triangular mesh. This offers the possibility to control 
the size of the mesh and thus find a trade-off between accuracy and 
computational cost.

4. Solving the BdG equations

The BdG problem (31) is solved using the ARPACK library [32]. It 
is directly interfaced with FreeFem++ and uses an Arnoldi method to 
compute the eigenvalues and eigenvectors of a given matrix. We use the 
following weak formulation corresponding to (31):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫


1
2
∇𝐴 ⋅∇𝑣1 + ∫


(𝐶trap − 𝜇)𝐴𝑣1 + ∫


2𝛽|𝜙|2𝐴𝑣1 + ∫


𝛽𝜙2𝐵𝑣1

= 𝜔∫


𝐴𝑣1,

−∫


1
2
∇𝐵 ⋅∇𝑣2 − ∫


(𝐶trap + 𝜇)𝐵𝑣2 − ∫


2𝛽|𝜙|2𝐵𝑣2 − ∫


𝛽𝜙

2
𝐴𝑣2

= 𝜔∫


𝐵𝑣2.

(47)

The bilinear terms in the left hand side of this equation form the finite 
element matrix 𝑀 that is sent to ARPACK. To check the accuracy of the 
eigenvalue computation, we compute the residual:

‖‖‖‖‖𝑀
(

𝐴

𝐵

)
−𝜔

(
𝐴

𝐵

)‖‖‖‖‖∞ . (48)

Numerical tests showed that using a shift leads to an increased ac-

curacy: the residual decreases to 10−7 and eigenvalues are closer to 
the expected values when compared to known results. We use a shift 
𝜎 = 10−4, which is implemented by adding the following term to the 
matrix:

−∫


𝜎(𝐴𝑣1 +𝐵𝑣2). (49)

The code for the BdG part is, again, very similar to mathematical 
expressions. For example, it is easy to see the correspondence between 
the BdG formulation (47) and its implementation in the following macro 
(file BdG_1comp/A_macro/Macro_problem.edp):

NewMacro problemBdG

varf vBdGMat([A,B],[v1,v2]) =

intN(Th,qforder=ord)(.5*grad(v1)’*grad(A) + (Ctrap

-mu)*A*v1’

+ 2.*beta*abs(phi)^2*A*v1’ + beta*phi^2*B*v1’

- .5*grad(v2)’*grad(B) - (Ctrap-mu)*B*v2’

- 2.*beta*abs(phi)^2*B*v2’ - beta*(phi’)^2*A*v2’

- sigma*A*v1’ - sigma*B*v2’)

BCBdG;

varf vBdGVec([A,B],[v1,v2]) = intN(Th,qforder=ord)

(A*v1’ + B*v2’);

EndMacro

For the two-component case, the numerical method is similar 
and based on the following weak formulation corresponding to
(21)-(23):
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Table 1

Test cases for the one-component BEC. Computational time and mesh size (number of elements). All compu-

tation were performed on a Macbook pro M1, 16 GB of DDR4 2400 MHz RAM.

Without mesh adaptation With mesh adaptation

CPU time GP CPU time BdG Mesh size CPU time GP CPU time BdG Mesh size

1D ground state 00:00:01 00:00:05 3 602

1D dark soliton 00:00:01 00:00:02 1 356

2D ground state 00:00:05 00:00:48 20 000 00:00:05 00:00:29 10 847

2D dark soliton 00:20:49 05:34:28 45 000 00:17:03 02:20:57 21 382

2D central vortex 00:20:33 02:36:25 34 406 00:09:16 00:53:20 13 300

3D ground state 00:38:02 06:51:43 63 888 00:28:56 04:51:09 46 497
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫


1
2
∇𝐴 ⋅∇𝑣1 + ∫


(𝐶trap − 𝜇1)𝐴𝑣1 + ∫



(
2𝛽11|𝜙1|2 + 𝛽12|𝜙2|2)𝐴𝑣1

+ ∫


𝛽11𝜙
2
1𝐵𝑣1 + ∫


𝛽12𝜙1𝜙2𝐶𝑣1 + ∫


𝛽12𝜙1𝜙2𝐷𝑣1

= 𝜔∫


𝐴𝑣1,

−∫


1
2
∇𝐵 ⋅∇𝑣2 − ∫


(𝐶trap − 𝜇)𝐵𝑣2 − ∫



(
2𝛽11|𝜙1|2 + 𝛽12|𝜙2|2)𝐵𝑣2

− ∫


𝛽11𝜙1
2
𝐴𝑣2 − ∫


𝛽12𝜙1𝜙2𝐶𝑣2 − ∫


𝛽12𝜙1𝜙2𝐷𝑣2

= 𝜔∫


𝐵𝑣2,

∫


1
2
∇𝐶 ⋅∇𝑣3 + ∫


(𝐶trap − 𝜇)𝐶𝑣3 + ∫



(
2𝛽22|𝜙2|2 + 𝛽21|𝜙1|2)𝐶𝑣3

+ ∫


𝛽21𝜙1𝜙2𝐴𝑣3 + ∫


𝛽21𝜙1𝜙2𝐵𝑣3 + ∫


𝛽22𝜙
2
2𝐷𝑣3

= 𝜔∫


𝐶𝑣3,

−∫


1
2
∇𝐷 ⋅∇𝑣4 − ∫


(𝐶trap − 𝜇)𝐷𝑣4 − ∫



(
2𝛽22|𝜙2|2 + 𝛽21|𝜙1|2)𝐷𝑣4

− ∫


𝛽21𝜙1𝜙2𝐴𝑣4 − ∫


𝛽21𝜙1𝜙2𝐵𝑣4 − ∫


𝛽22𝜙2
2
𝐶𝑣4

= 𝜔∫


𝐷𝑣4.

(50)

5. Validation test cases for the one-component BEC

We start by validating the codes for the one-component BEC against 
well known benchmarks. For all considered cases the non-dimensional 
equations are solved in the setting for which 𝛽 = 1. A summary of the 
considered cases, together with typical computational times and mesh 
sizes (i.e. the number of elements), is provided in Table 1. The mesh is 
initially build by taking into account the topology of the solution. For 
instance, the mesh for the 2D vortex case is a disk with smaller trian-

gles in the centre (where the vortex is located), with defined minimum 
edge size ℎ𝑚𝑖𝑛 = ℎ𝑚𝑎𝑥∕45. When the adaptive mesh refinement is used, 
at each iteration of the Newton algorithm the mesh is refined in re-

gions of high gradients (e.g. around solitons or vortices) and de-refined 
otherwise (zones of constant density), see Sect. 3.3. To fairly compare 
the efficiency of the two algorithms for these known cases, we impose 
the same minimum edge size ℎ𝑚𝑖𝑛 in the adaptive mesh refinement pro-

cedure. Note however that, when exploring branches of solutions for 
which the topology is unknown, it is safer to use the adaptive mesh re-
8

finement to accurately capture new solutions. For each case in Table 1, 
Table 2

1D ground state: eigenvalues and Krein signatures.

𝑅𝑒(𝜔) 𝐼𝑚(𝜔) K 𝜔TF
𝑛

from (51)

𝜔1 -2.89857e-15 2.16087e-07 1
𝜔TF
0 = 0

𝜔2 6.18933e-15 -2.16087e-07 1

𝜔3 -0.025 -8.80682e-11 1
𝜔TF
1 = 𝜔𝑧 = 0.025

𝜔4 0.025 2.76512e-11 1

𝜔5 -0.0433018 -4.41549e-11 1
𝜔TF
2 ≈ 0.043301270

𝜔6 0.0433018 -1.21387e-11 1

𝜔7 -0.0612394 -2.87955e-10 1
𝜔TF
3 ≈ 0.061237243

𝜔8 0.0612394 1.64467e-10 1

𝜔9 -0.0790624 -1.09235e-10 1
𝜔TF
4 ≈ 0.07905694

𝜔10 0.0790624 8.67993e-11 1

we indicate the size of the mesh for the last step of the continuation 
procedure.

5.1. 1D case: ground state

The first test case is the computation of eigenvalues of the ground 
state of a one-dimensional BEC with trapping potential 𝑉trap =

1
2𝑚𝜔2

𝑧
𝑧2. 

In the Thomas-Fermi limit, the explicit expressions for eigenvalues are 
known [53]:

𝜔TF
𝑛

= 𝜔𝑧

√
𝑛(𝑛+ 1)

2
, 𝑛 ∈N. (51)

We compare in Table 2 numerical and theoretical values of eigen-

values 𝜔 for 𝜇 = 6 and 𝜔𝑧 = 0.025. The Thomas-Fermi solution (9) was 
used to initialize the Newton algorithm. We could check from Table 2

that the computed eigenvalues verify the following expected properties 
(see also Sect. 2.2):

(i) all eigenvalues are real (the stationary state is dynamically stable) 
and form pairs (+𝜔, −𝜔),
(ii) the first eigenvalue is 𝜔 = 0;

(iii) the other eigenvalues correspond to theoretical predictions (51),

(iv) all Krein signatures are positive (the stationary state is energetically 
stable).

Note that, since the computation of eigenvalues stops when the 
residual defined in (48) is reduced to 10−7, values below this thresh-

old have to be considered as zero. However, we prefer to display the 
output values of the code to better guide the user and ensure the repro-

ducibility of the presented results.

Note also from Table 2 that this case requires only 5 seconds for the 
computation of 100 BdG modes. This illustrates the advantage of the 
finite-element discretization generating sparse matrices. Special storage 
and linear algebra algorithms are well adapted to this sparse structure of 
matrices, resulting in a considerable gain of computational time, when 
compared to discretization methods using full matrices. For this case 
using 3,602 elements, corresponding to 𝑁𝑑𝑜𝑓 =14,410 degrees of free-

dom or unknowns (since we use P2 elements) the BdG matrix has only 

115,268 non-zero elements.
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Fig. 1. 1D dark soliton: a) initial state and stationary solution, b) anomalous mode with 𝜔4 ≈
𝜔𝑧√ .
Table 3

1D dark soliton: eigenvalues and Krein sig-

natures.

𝑅𝑒(𝜔) 𝐼𝑚(𝜔) K

𝜔1 -2.57971e-07 -3.29591e-15 1

𝜔2 2.57971e-07 3.25101e-15 1

𝜔3 -0.0178197 -1.09577e-12 -1

𝜔4 0.0178197 1.00791e-12 -1

𝜔5 -0.025 -5.42312e-12 1

𝜔6 0.025 6.69980e-12 1

𝜔7 -0.0435553 -8.24994e-12 1

𝜔8 0.0435553 9.60204e-12 1

𝜔9 -0.0616151 4.28088e-13 1

𝜔10 0.0616151 2.16934e-13 1

5.2. 1D case: dark soliton

For the second 1D test case, we analyse an excited state obtained 
by adding a dark soliton to the Thomas-Fermi density previously com-

puted. The initial condition for the Newton algorithm is thus built as:

𝜙𝑖𝑛𝑖𝑡
𝐷𝑆

=
√

𝑛TF tanh(
√

𝜇𝑧). (52)

We plot in Fig. 1(a) the initial condition and the converged stationary 
state. Eigenvalues are displayed in Table 3. As expected, all eigenvalues 
are real, as the dark soliton is dynamically stable in 1D. A complete 
characterization of the BdG modes is offered in [41].

• The mode with 𝜔4 ≈
𝜔𝑧√
2
≈ 0.017677669 is the anomalous mode; it is 

the only mode with a negative Krein signature. It is represented in 
Fig. 1(b) and we retrieve the profile obtained in [54].

• The dipole or Kohn mode at 𝜔6 ≈ 𝜔𝑧 = 0.025 corresponds to oscilla-

tions of the centre of mass of the condensate.

• The quadrupole mode (or the breathing mode) is obtained for 
𝜔8 ≈ 𝜔𝑧

√
3 ≈ 0.04330127. This mode is particular to the one-

dimensionality of the system.

5.3. 2D case: ground state

We switch now to 2D BEC configurations with trapping potential 
𝑉trap =

1
2𝑚𝜔2

⟂𝑟
2, where 𝑟2 = 𝑥2 + 𝑦2. For this case, the eigenvalues in the 
9

Thomas-Fermi limit are also known [53]:
2

𝜔TF
𝑚,𝑘

= 𝜔⟂

√
𝑚+ 2𝑘2 + 2𝑘(1 +𝑚), (53)

where 𝑚, 𝑘 ≥ 0 are integers. We present in Table 4 the first 20 eigenval-

ues computed for 𝜇 = 6 and 𝜔⟂ = 0.2, with and without mesh adapta-

tion. We find all Krein signatures to be 1, which is the expected result 
in the absence of topological excitations. This is a perfect case to check 
that computations using mesh adaptation provide the same results as 
computations with a refined fixed mesh. Results in Table 4 show that 
this is indeed the case for our BdG solvers.

To give again an indication of the size of the involved matrices in the 
eigenvalue solver (see also the 1D case), we note that for this case using 
20,000 elements, corresponding to 𝑁𝑑𝑜𝑓 =80,802 degrees of freedom 
(since we use P2 elements) the BdG matrix has only 1,846,404 non-zero 
elements. Due to the sparse structure of matrices, the full computation 
of 100 BdG modes takes only 43 seconds.

5.4. 2D case: dark soliton

Following the same procedure as in the 1D case, we add to the pre-

viously computed 2D ground state a centred dark soliton (Fig. 2). This 
is an interesting case to test the continuation procedure in following a 
branch of stationary solutions. The initial condition is given by the |1,0⟩
state in the linear limit:

𝜙𝐷𝑆 =
√

𝜔⟂
2𝜋

𝐻0(
√

𝜔⟂𝑥)𝐻1(
√

𝜔⟂𝑦)𝑒
− 1

2𝜔⟂(𝑥2+𝑦2)
, (54)

where 𝐻𝑛 are Hermite polynomials. We set 𝜔⟂ = 0.2 and follow this 
solution up to 𝜇 = 3. Real and imaginary parts of eigenvalues are pre-

sented in Fig. 2(a, b) and are identical to the results published in [55]. 
This state does not have an azimuthal symmetry. Due to the space dis-

cretization, there exists a preferred direction along which the soliton 
will tend to align itself. When adapting the mesh, this direction changes 
and the wave function will then rotate. To avoid this phenomenon, we 
only adapt the mesh every 5 iterations during the continuation pro-

cedure. This permits to optimally adapt the size of the mesh while 
reducing the effects of the rotation. Table 1 shows that this is an ef-

ficient approach to reduce the computational time.

The final adapted mesh is presented in Fig. 2(c) for a selected value 
of the chemical potential, with the corresponding atomic density |𝜙|2 in 
Fig. 2(d). We also present in Figs. 2(e) and 2(f) the dependence of the 
total number of atoms 𝑁 and the energy  of the system, respectively, 
on the chemical potential 𝜇. We recall from Eq. (7) that the relation 
between 𝜇 and 𝑁 is nonlinear and depends on the computed stationary 

state 𝜙.
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Table 4

2D ground state: eigenvalues and Krein signatures.

No mesh adaptation With mesh adaptation 𝜔𝑚,𝑘 from (53)

𝑅𝑒(𝜔) 𝐼𝑚(𝜔) K 𝑅𝑒(𝜔) 𝐼𝑚(𝜔) K

𝜔1 -2.40414e-06 -1.98607e-16 1 -1.85460e-15 9.45459e-07 1
𝜔TF
0,0 = 0

𝜔2 2.40414e-06 1.85464e-16 1 2.12161e-15 -9.45459e-07 1

𝜔3 -0.200004 6.56614e-12 1 -0.200005 -6.67229e-12 1

𝜔TF
1,0 = 0.2𝜔4 0.200004 4.53514e-12 1 0.200005 5.92280e-12 1

𝜔5 -0.200004 4.81411e-11 1 -0.200005 -2.00336e-11 1

𝜔6 0.200004 9.24505e-11 1 0.200005 -1.73351e-11 1

𝜔7 -0.283448 1.57185e-11 1 -0.283448 4.81597e-11 1

𝜔TF
2,0 = 0.28284271𝜔8 0.283448 -9.27850e-11 1 0.283448 -2.43005e-11 1

𝜔9 -0.283467 -8.76293e-12 1 -0.283467 1.32560e-11 1

𝜔10 0.283467 -5.44819e-11 1 0.283467 -1.49808e-11 1

𝜔11 -0.348767 8.04747e-11 1 -0.348769 3.80437e-11 1

𝜔TF
3,0 = 0.34641016𝜔12 0.348767 2.11023e-11 1 0.348769 -9.97390e-11 1

𝜔13 -0.348767 -2.40051e-11 1 -0.348769 3.10873e-11 1

𝜔14 0.348767 5.21115e-12 1 0.348769 -8.21595e-11 1

𝜔15 -0.400017 -1.42155e-10 1 -0.400018 -9.66174e-11 1

𝜔TF
4,0 = 𝜔TF

0,1 = 0.4

𝜔16 0.400017 -2.04832e-11 1 0.400018 2.76314e-11 1

𝜔17 -0.405640 9.79059e-12 1 -0.405642 -5.96945e-11 1

𝜔18 0.405640 -5.94868e-11 1 0.405642 -3.22440e-11 1

𝜔19 -0.405676 -6.62270e-11 1 -0.405679 -1.20474e-11 1

𝜔20 0.405676 1.45039e-11 1 0.405679 8.86265e-12 1
5.5. 2D case: central vortex

We compute another solution studied in [55,56]. It consists of a 
disk-shaped BEC with a centred vortex. The initial condition is given by 
the |0,1⟩ state in cylindrical coordinates (𝑟, 𝜃):

𝜙𝑉 𝑆 ∝ 𝑟𝐿1
0(𝜔⟂𝑟

2)𝑒𝑖𝜃𝑒−
1
2𝜔⟂𝑟2

, (55)

where 𝐿1
0 is the Laguerre polynomial. We set, as in the previous case, 

𝜔⟂ = 0.2. Eigenvalues computed with and without mesh adaptation are 
displayed in Figs. 3(a) and (b). We checked that both methods give 
the same results as those obtained in [55,56]. The atomic density is 
presented in Figs. 3(c) and (d) for two values of 𝜇.

The first BdG modes (𝐴, 𝐵) for this state are displayed in Fig. 4 by 
plotting their modulus coloured by the phase. We can distinguish:

∙ The zero-energy mode 𝜔 = 0 (Fig. 4(a)), associated to the phase invari-

ance of the GP equation.

∙The anomalous mode (Fig. 4(b)) corresponds to the following approxi-

mation of its eigenvalue in the Thomas-Fermi limit [55]:

𝜔 =
𝜔2
⟂

2𝜇
ln(𝐴 𝜇

𝜔⟂
) ≈ 0.03261667238, 𝐴 ≈ 2

√
2𝜋 ≈ 8.886. (56)

This value is represented by a dashed green line in Figs. 3 (a) and (b).

∙ The dipole or Kohn mode (Fig. 4(c)) corresponds to 𝜔 = 𝜔⟂ and is 
independent of 𝜇.

∙ The 4-th mode (Fig. 4(d)) corresponding to 𝜔 = 𝜇 − 2𝜔⟂ in the linear 
limit [56]. This value is represented by a continuous green line in Figs. 3

(a) and (b).

5.6. 3D case: ground state

Computing the BdG modes for a 3D BEC is a challenging numerical 
problem. Even with mesh adaptation, the number of degrees of freedom 
is high and increases with the size of condensate (i.e. with 𝜇). For this 
test case, we computed the spectrum of the ground state of a spherical 
BEC with trapping potential 𝑉trap =

1
2𝑚𝜔2

⟂𝑟
2, where 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2. We 

set 𝜔⟂ = 1. The eigenvalues presented in Fig. 5 are in very good agree-

ment with numerical results obtained in [12]. This case shows that our 
finite-element toolbox can be used to study simple 3D configurations. 
For more complicated states, the use of parallelization is mandatory to 
10

reduce the computational time and memory requirements.
6. Validation test cases for the two-component BEC

For the two-component BEC, we compute BdG modes for the dark-

antidark solitary 1D or 2D waves studied in [15]. Antidark solitary 
waves are bright solitary waves on top of a finite background. Such 
states appear in a two-component system with inter-component repul-

sion: a dark soliton or a vortex (or a ring) in one component will induce 
an effective potential, through the inter-component nonlinearity, on the 
second component. The result is that atoms of the second component 
are attracted into the dip of the first one. We consider the system (32)

in the case of repulsive inter-component interactions with miscibility 
condition 0 ≤ 𝛽12 <

√
𝛽11𝛽22 that ensures that the two components co-

exist outside the dark-antidark state. To simplify the case study, since 
only the ratio between non-linear interaction constants matters, we set 
𝛽11 = 𝛽22 = 𝛽 = 1, 𝛽12 = 𝛽21 and 0 < 𝛽12 < 𝛽.

The considered two-component cases are summarized in Table 5 dis-

playing the necessary computational times and mesh sizes. Note that the 
codes consider independent values for coefficients 𝛽𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 2, and 
thus can be used to study configurations different from those analysed 
in [15].

6.1. 1D case: dark-antidark soliton

The first state is a dark-antidark solitary wave in 1D. We set a soli-

ton solution (constructed as in Eq. (52)) in the first component, while 
the second component is in the Thomas-Fermi ground state. Obtained 
eigenvalues are shown in Fig. 6(a) and (b) and correspond to the re-

sults of [15]. The small imaginary instability around 𝛽12 = 𝛽21 = 0.8 is 
well resolved. Profiles of the atomic density for different values of the 
interaction coefficient are presented in Fig. 6(c).

6.2. 2D two-component case: ring-antidark-ring state

With the toolbox, we provide two test cases for 2D configurations: 

the vortex-antidark and ring-antidark solitary waves. We show here
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Fig. 2. 2D dark soliton: a) real part 𝜔𝑟 and b) imaginary part 𝜔𝑖 of eigenvalues as a function of 𝜇. Example of solution for 𝜇 = 3.007: c) adapted mesh, d) atomic 
density |𝜙|2. Variation with 𝜇 of: e) number of atoms 𝑁 , f) the energy  .
only the case with ring-antidark solitary waves. The first component 
contains a ring soliton and the second is in the ground state. Results are 
shown in Figs. 7(a) and (b) for the real and imaginary parts of the eigen-

values. Fig. 7(c) shows for the atomic density profiles which correspond 
to the figures presented in [15].

7. Description of the programs

In this section, we first describe the architecture of the programs 
and the organisation of the provided files. We then present the input 
parameters and the structure of the output files.

7.1. Program architecture

Codes and data files forming the BdG toolbox are stored in the
11

FFEM_BdG_toolbox directory, which is organized around two main 
subdirectories: BdG_1comp and BdG_2comp, corresponding to the one-

and two-component codes. Each subdirectory contains two main files: 
FFEM_GP_$case.edp, which is the main FreeFem++ script file for the 
computation of the stationary state, and FFEM_BdG_$case.edp which 
is the main FreeFem++ script file for the computation of the BdG 
eigenvalues ($case=1c_1D_2D_3D for the one-component case and 
$case=2c_1D_2D for the two-component case). To run the computa-

tion of the Gross-Pitaevskii stationary state, the user can use the com-

mand FreeFem++ FFEM_GP_$case.edp. BdG eigenvalues can then 
be computed with the command FreeFem++ FFEM_BdG_$case.edp. 
Parameter files for the examples presented in this paper are stored in 
the INIT folder.

The obtained solutions are saved in the dircase directory. Depend-

ing on the output format selected by the user, data files are generated 
in specific folders for visualization with Tecplot, Paraview or Gnuplot. 

We also provide in the folder Figures ready-made layouts for Tec-
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Fig. 3. 2D BEC with a centred vortex. Real part 𝜔𝑟 of eigenvalues as a function of 𝜇 computed a) without and b) with mesh adaptation. c) Atomic density |𝜙|2 for 
𝜇 = 0.45 and 𝜇 = 3. The radius of the computational domain is 𝑅𝑑 = 4.5. (For interpretation of the colours in the figure(s), the reader is referred to the web version 
of this article.)
12

Fig. 4. 2D BEC with a centred vortex: first four BdG modes 𝐴 and 𝐵. Surfaces of modulus coloured by the phase. The radius of the computational domain is 𝑅𝑑 = 4.5.
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Fig. 5. 3D case: ground state. a) Real part 𝜔𝑟 of the eigenvalues as a function of 𝜇, b) illustration of four BdG modes (iso-surfaces of the modulus).

Table 5

Test cases for the two-component BEC. Computational time and mesh size (number of elements). All computation 
were performed on a Macbook pro M1, 16 GB of DDR4 2400 MHz RAM.

Without mesh adaptation With mesh adaptation

CPU time GP CPU time BdG mesh size CPU time GP CPU time BdG mesh size

1D dark-antidark state 00:00:27 00:07:50 2714

2D vortex-antidark state 00:30:04 03:41:55 38 640 00:14:06 01:42:28 14 408

2D ring-antidark state 00:38:20 06:51:21 40 335 00:12:43 02:28:26 11 639
plot. The user can thus obtain the figures from this paper using newly 
generated data. More details about the output structure are given in 
Sect. 7.4.

The complete architecture of the BdG_1comp directory is the follow-
13

ing (the architecture of the BdG_2comp directory is almost identical):

Fig. 6. 1D two-component case: dark-antidark solitary wave. a) Real part 𝜔𝑟 and b) i
of 𝛽12 .
1. FFEM_GP_$case.edp: the main script for the computation of the GP 
stationary states.

2. FFEM_BdG_$case.edp: the main script for computing eigenvalues.

3. param_num_common.inc: a parameter file for the main numerical pa-
rameters.

maginary part 𝜔𝑖 of BdG eigenvalues, c) atomic density profiles for three values 
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Fig. 7. 2D two-component case: ring-antidark-ring state. a) Real part 𝜔 and b) imaginary part of eigenvalues, c) density profiles for three values of 𝛽 .
𝑟

4. INIT: directory storing the parameter files for the examples pre-

sented in Sect. 5.

5. Figures: directory containing Tecplot layouts used to replot the 
figures shown in Sect. 5. The main code must be run with the asso-

ciated example before opening the layout to replot the figure. For 
some examples, it is necessary to run the case with different pa-

rameters (e.g. with and without mesh adaptation) before opening 
the layout.

6. A_macro: directory containing macros used in the main scripts.

7.2. Macros and functions

The different macros and functions used in the toolbox for the se-

quential code are stored in the A_macro folders:

• Macro_BdGsolve.edp: macro computing the BdG eigenvalues corre-

sponding to matrices in Eqs. (47) and (50).

• Macro_createdir.edp: macro creating the file structure of the

dircase folder.

• Macro_GPsolve.edp: macro computing the GP stationary state with 
a Newton method (see Eqs. (37) and (41)-(44)).

• Macro_meshAdapt.edp: macro adapting the mesh to the wave func-

tion.

• Macro_operator.edp: definitions of useful macros and functions: gra-

dients, energy (3), chemical potential (7), Hermite polynomials, 
etc. Also contains a macro creating a spherical mesh for 3D prob-

lems.

• Macro_output.edp: macros used to save data in Tecplot and Paraview 
formats.

• Macro_plotEigenvector.edp: macro plotting the real and imaginary 
14

parts of a BdG eigenvector.
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• Macro_plotphi.edp: macro plotting the complex wave function. The 
user can press “k” to alternate between plots of the density, phase 
and real and imaginary parts of the wave function.

• Macro_problem.edp: definitions of the weak formulations for the GP 
(Eqs. (37) or (50)) and BdG problems (Eqs. (47) or (41)-(44)).

• Macro_restart.edp: macros used to save and load the wave function 
to or from FreeFem++ files.

• Macro_saveData.edp: macro saving the stationary wave function.

• Macro_saveEigenvalues.edp: macro saving the BdG eigenvalues and 
eigenvectors.

7.3. Input parameters

Parameters are separated in two files. Numerical parameters used in 
all computations are in param_num_common.inc. Files in the INIT direc-

tory specify physical parameters describing the state that will be studied 
during a computation and numerical parameters specific to this prob-

lem. The files distributed with the toolbox provide a variety of examples 
that can be used as a starting point when selecting parameters for the 
study of new states.

(1) In the file param_num_common.inc, the parameters are:

• displayplot: controls the output information to plot. Possible val-

ues range from 0 (no plots), to 2 (plots data at all iterations of the 
Newton method and all eigenvectors computed by the BdG code).

• iwait: a Boolean indicating if the code must wait for user input 
when a plot is shown (true) or it can continue (false) with the 
next plot.

• cutXY, cutXZ, cutYZ: (only for 3D cases) Booleans indicating 
whether to plot cuts of the wave function along the different axis 

at 𝑥 = 0, 𝑦 = 0 or 𝑧 = 0.
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• Tecplot: a Boolean indicating whether to save data in the Tecplot 
format.

• Paraview: a Boolean indicating whether to save data in the Par-

aview format (only in 2D and 3D).

• adaptinit: if true, the initial solution is recomputed after the first 
mesh adaptation.

• adaptmeshFF: determines if mesh adaptation is used (true) or not 
(false).

• useShift: a Boolean indicating whether to use a shift when com-

puting the BdG eigenvalues (see Eq. (49)).

• Nadapt: if mesh adaptation is used, the mesh is adaptated every

Nadapt iterations during the continuation.

• Nplot: the wave function is plotted every Nplot iterations during 
the continuation.

• Nsave: the wave function is saved for Paraview or Tecplot every

Nsave iterations during the continuation.

• Nrst: the wave function is saved for the BdG computation every

Nrst iterations during the continuation.

• tolerrF: the tolerance value of 𝜖𝐹 in Eq. (45).

• tolNewton: the tolerance value of 𝜖𝑞 in Eq. (45).

• shift: the value of the shift 𝜎 used when computing eigenvalues.

• newtonMax: the maximum number of Newton iterations.

(2) In the file $case.inc, stored in the INIT directory, the parameters 
are:

• General parameters for the case:

∙ dimension: the dimension of the problem (1, 2 or 3).

∙ FEchoice: the type of finite element used. Usually 𝑃2.

∙ nev: the number of eigenvalues computed by the BdG code.

• Parameters used to restart a computation:

∙ restart: a boolean indicating if the initial solution is a restart from 
a previous computation. If true, the solution and mesh stored in
fcaserestart for the value of 𝜇 given by murestart will be used as 
initial solution.

∙ murestart: the initial value of 𝜇 in the case of a restart.

∙ fcaserestart: the folder where the initial solution is stored in the 
case of a restart.

• Parameters of the continuation:

∙ kpol, lpol, mpol: integers defining the initial state in the linear 
limit.

∙ startmu: the initial value of 𝜇.

∙ endmu: the final value of 𝜇.

∙ dmu: the increment in 𝜇 during the continuation.

∙ facmu: when using the linear limit, the initial value of 𝜇 is given 
by facmu ⋅ 𝜇|𝑘𝑙𝑚⟩.

• Coefficients of the GP equation:

∙ beta: the nonlinear coefficient (we set 𝛽 = 1 in all test cases).

∙ ax, ay, az: the frequencies of the trapping potential along the 
three axes.

∙ Ctrap: a function defining the trapping potential.

• Parameters for the mesh creation:

∙ Dx: the distance between points on the mesh border.

∙ scaledom: a coefficient used to control the size of the domain: 
the mesh radius is given by Rdom = scaledom 𝑟TF where 𝑟TF is the 
Thomas-Fermi radius.

∙ createMesh: a macro creating the initial mesh Th.

• Parameters for the mesh adaptation:

∙ errU: the interpolation error level.

∙ hmin: the minimum length of a mesh element edge in the new 
mesh.

∙ hmax: the maximum length of a mesh element edge in the new 
mesh.

∙ adaptratio: the ratio for a prescribed smoothing of the metric. No 
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smoothing is done if the value is less than 1.1.
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• Parameters for the initial solution:

∙ initname: the name given to the initial solution.

∙ initcond: a macro defining the initial solution for the phi vari-

able.

• Definitions of the boundary conditions:

∙ BCGP: the boundary conditions used in the GP code for Eqs. (37)

and (41)-(44).

∙ BCBdG: the boundary conditions used in the BdG code for Eqs. 
(47) and (50).

∙ fcase: the name given to the current computation.

∙ dircase: the directory where the results are stored.

(3) In a two component case, some new parameters are defined in the

$case.inc file:

• Parameters used to restart a computation:

∙ mu1restart, mu2restart: initial values of 𝜇1 and 𝜇2 in the case 
of a restart.

∙ beta12restart, beta21restart initial values of 𝛽12 and 𝛽21 in the 
case of a restart.

• Parameters of the continuation:

∙ startmu1, startmu2: initial values of 𝜇1 and 𝜇2.

∙ endmu1, endmu2: final values of 𝜇1 and 𝜇2.

∙ dmu1, dmu2: increments of 𝜇1 and 𝜇2 during the continuation.

∙ startbeta12, startbeta21: initial values of 𝛽12 and 𝛽21.
∙ endbeta12, endbeta21: final values of 𝛽12 and 𝛽21.
∙ dbeta12, dbeta21: increments of 𝛽12 and 𝛽21 during the continu-

ation.

• Coefficients of the GP equation:

∙ beta11, beta12: nonlinear coefficients 𝛽11 and 𝛽22.
• Parameters for the initial solution:

∙ initname1: the name given to the initial solution for the first 
component.

∙ initname2: the name given to the initial solution for the second 
component.

∙ initcond: a macro defining the initial solution for [phi1,phi2]
variables.

7.4. Outputs

When a computation starts, the OUTPUT_$case directory is cre-

ated. It contains up to eight folders. The RUNPARAM directory contains 
a copy of the code and data files, allowing an easy identification of each 
case and preparing an eventual rerun of the same case. The other fold-

ers contain different output format files of the computed solution, to 
be visualised with Tecplot, Paraview or Gnuplot. The content of these 
subfolders depends on the case and on the computation parameters (dif-

ferences in the two component code are given in parentheses):

1. The Gnuplot folder contains two files:

∙ Informations about the stationary states are stored in the GP_re-
sults.dat file. The columns are in order: the non-linear coeffi-

cient 𝛽 (𝛽12 and 𝛽21), the imposed chemical potential 𝜇 (𝜇1 and 
𝜇2), the number of Newton iterations used for this value of 𝜇, the 
errors 𝜖𝐹 and 𝜖𝑞 (45), the computed value of the chemical potential 
(7) (computed values of 𝜇1 and 𝜇2), the number of atoms (4) (the 
number of atoms in the two components), the GP energy (3), the 
mesh size, the number of degrees of freedom and the CPU time to 
compute the stationary state.

∙ BdG eigenvalues are stored in the BdG_results.dat file. The 
columns are in order: the non-linear coefficient 𝛽 (𝛽12 and 𝛽21), the 
imposed chemical potential 𝜇 (𝜇1 and 𝜇2), the eigenvalue number 
between 0 and nev, the real and imaginary part of the eigenval-

ues, the Krein signature and its sign (the Krein signature and its 
sign for the two components), the residual (48) and the CPU time 

to compute the eigenvalues.



G. Sadaka, V. Kalt, I. Danaila et al.

2. The Paraview folder contains the wave functions stored as .vtk or 
.vtu and .pvd files:

∙ phi_init.vtu and phi_final.vtu are the initial and final so-

lutions.

∙ phi_mu_$mu.vtu contains the stationary wave function for a 
given value of 𝜇.

∙ phi_mu1_$mu1_mu2_$mu2.vtu contains the stationary wave 
function for given values of 𝜇1 and 𝜇2 in the first continuation.

∙ phi_beta12_$beta12_beta21_$beta21.vtu contains the 
stationary wave function for given values of 𝛽12 and 𝛽21 in the sec-

ond continuation.

3. The Paraview_Eigenvectors folder contains the eigenvectors 
stored as:

∙ eVec_mu_$mu_$nev.vtu in the one component code.

∙ eVec_beta12_$beta12_beta21_$beta21_mu1_$mu1_mu2_
$nev.vtu in the two component code.

4. The RST folder contains the stationary states stored as FreeFem++ 
files. The names are:

∙ RST-$mu.rst or RST-$mu1-$mu2-$beta12-$beta21.rst
for the data.

∙ RSTTh-$mu or RSTTh-$mu1-$mu2-$beta12-$beta21 for the 
mesh files. The file extensions are .mesh (in 1D), .msh (in 2D) or 
.meshb (in 3D).

5. The Tecplot folder contains the wave functions stored as .dat Tec-

plot files:

∙ phi_init.dat and phi_final.dat are the initial and final so-

lutions.

∙ phi_mu_$mu.dat contains the stationary wave function for a 
given value of 𝜇.

∙ phi_mu1_$mu1_mu2_$mu2.dat contains the stationary wave 
function for given values of 𝜇1 and 𝜇2 in the first continuation.

∙ phi_beta12_$beta12_beta21_$beta21.dat contains the 
stationary wave function for given values of 𝛽12 and 𝛽21 in the sec-

ond continuation.

6. The Tecplot_Eigenvectors folder contains the eigenvectors 
stored in the Tecplot format:

∙ eVec_mu_$mu_$nev.dat in the one component code.

∙ eVec_beta12_$beta12_beta21_$beta21_mu1_$mu1_mu2_
$nev.dat in the two component code.

7. The Tecplot_Eigenvalues folder contains the eigenvalues 
stored in the Tecplot format. Filenames are BdG_results_$i.
dat. Each file contains the 𝑖-th smallest eigenvalue for each value 
of 𝜇 (or 𝛽12 in the two-component code).

8. Summary and conclusions

The aim of the toolbox presented in this paper is the computation of 
stationary states and BdG modes of one- and two-component BECs in 1D 
and 2D. The use of mesh adaptation enables an efficient computation of 
stationary states by adapting the spatial discretization to the topology 
of the considered state. This makes possible the study of various 1D and 
2D problems and even a simple 3D configuration without paralleliza-

tion. The toolbox was created with FreeFem++ , a free and open-source 
finite element software for the study of partial differential equations. 
The method consists of two steps: (i) a Newton method, combined with 
a continuation on the chemical potential 𝜇 or the inter-component in-

teraction parameters 𝛽12 and 𝛽21, is used to obtain the stationary state 
of the GP equation, (ii) the BdG modes are obtained by solving an 
eigenvalue problem with ARPACK. The numerical code was validated 
against test cases studied theoretically or numerically in the literature. 
All parameter files corresponding to these test cases are shared with the 
toolbox, allowing the user to obtain the results presented in this paper. 
These parameter files can be used as templates to initiate the study of 
other BEC states. We considered only one and two component systems 
with a cubic nonlinearity, but the toolbox could be easily modified to 
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study other configurations such as quartic ± quadratic trapping poten-
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tials [57], dipolar interactions [58] or spinor condensates [59]. Future 
extensions of the toolbox concern the implementation of domain de-

composition methods and the use of PETSc and SLEPc libraries for this 
problem. The new parallel toolbox will make possible the computation 
(with a reasonable CPU time), of BdG modes for 3D BEC configurations 
without axial symmetry, such as BEC with 𝑈 , 𝑆 vortices [10], giant vor-

tices [60] or new computationally discovered exotic states reported in 
very recent contributions [61].
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