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Abstract—Comprehension of metabolic pathways is considerably enhanced by

metabolic flux analysis (MFA-ILE) in isotope labeling experiments. The balance

equations are given by hundreds of algebraic (stationary MFA) or ordinary

differential equations (nonstationary MFA), and reducing the number of operations

is therefore a crucial part of reducing the computation cost. The main bottleneck for

deterministic algorithms is the computation of derivatives, particularly for

nonstationary MFA. In this article, we explain how the overall identification process

may be speeded up by using the adjoint approach to compute the gradient of the

residual sum of squares. The proposed approach shows significant improvements

in terms of complexity and computation time when it is compared with the usual

(direct) approach. Numerical results are obtained for the central metabolic

pathways of Escherichia coli and are validated against reference software in the

stationary case. The methods and algorithms described in this paper are included

in the sysmetab software package distributed under an Open Source license at

http://forge.scilab.org/index.php/p/sysmetab/.
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1 INTRODUCTION

NONSTATIONARY MFA can contribute significantly to the compre-
hension, both qualitative and quantitative, of a metabolic net-
work [1], but before the creation of the Elementary Metabolite
Units (EMU) framework [2], [3] the high computation cost of non-
stationary MFA prevented the development of efficient software.
However, topological network reduction methods of the sort that
EMU makes possible are not the only way of curbing the computa-
tion cost of nonstationary MFA. Given that both stationary and
nonstationary MFA belong to the class of general inverse problems
where measurements depend on parameters through a state equa-
tion, there is a technique, namely the adjoint approach [4], [5], [6],
that may be used to greatly improve the computation of different
kinds of derivatives.

The main contribution of this paper is demonstrating that
independently of the topological network reduction, the adjoint
approach considerably speeds up the computation of the gradi-
ent residual sum of squares (RSS), meaning that the entire
process of estimating unknown parameters is accelerated signifi-
cantly. We show that in the (usual) direct approach the sum of
the times required for the state and gradient calculations is dom-
inated by the computation time of the gradient itself, whereas in
the adjoint approach the two computation times are of the same
order. While the direct approach has a cost that is unavoidably
proportional to the number p of unknown parameters (fluxes
and pool sizes), in the case of the adjoint approach the cost of
the gradient computation is independent of p. The algorithms
described below are implemented in the accompanying Open

Source software sysmetab, which can handle stationary and
nonstationary MFA.

As theoretical results are asymptotical and can be degraded by
practical implementation bottlenecks, we perform a time analysis
for both gradient computations on the central metabolism of E. Coli,
in which we compare overall computation times for the direct and
adjoint approaches with respect to labeling state sizes: reduced ver-
sus full cumomer set and stationary versus nonstationary data. We
contrast estimated flux values for the stationary datawith the values
obtained from the reference softwares 13CFLux2 [7] and influx_s

[8], which do not implement the adjoint approach.We detail the dis-
tribution of running time on the network mentioned above and on a
larger, poorly defined version of this network. We show that in this
particular context, when multiple flux estimations from different
perturbed data aremade repeatedly (i.e., theMonte Carlo method is
applied), sysmetab is competitive with other software. For param-
eter estimations using time-dependent labeling data generated by
stationary flux estimations and realistic pool size values, the ratio of
running times from one approach to the other exceeds 20.

The paper is organized as follows. In Section 2, we introduce the
mathematical structure of 13C MFA. Mathematical aspects of the
algorithms implemented in sysmetab are given in Sections 3 and 4
respectively for stationary and nonstationary MFA, and their com-
plexity is compared. Implementation details are described in Sec-
tion 5. Section 6 presents numerical results obtained by sysmetab.

2 OPTIMIZATION MODEL OF MFA

The aim of 13Cmetabolic flux analysis is to determine fluxes v, pool
sizes m (in the nonstationary case), expressed as a vector of p

parameters u ¼ ðv;mÞ, such that experimental labeling data y and
other measurements w, e.g., input/output fluxes and pool sizes,
are best fitted to their simulated values. This means minimizing
the objective function

JðuÞ ¼ 1

2
kgðxðuÞ; uÞ � yk2Y þ

1

2
khðuÞ � wk2W ; (1)

where g and h are given functions and xðuÞ denotes the (possibly
time-dependent) n labeling states of the metabolic network, implic-
itly defined by the state equation

fðx; uÞ ¼ 0: (2)

This equation takes the form of a system of algebraic or ordinary
differential equations (ODE), respectively for stationary or nonsta-
tionary metabolic flux analysis. The notations k � kY and k � kW are
used for the norms in the space of labeling and non-labeling meas-
urements, denoted by Y and W respectively. These norms (may)
model variations due to experimental noise by introducing weight-
ing covariance matrices. In both the stationary and nonstationary
cases the spaces Y and W are finite-dimensional normed vector
spaces, i.e., y and w can be considered as vectors containing real
measured data.

Below, Q denotes the space of admissible parameters, i.e., the
space describing realistic physical parameters comprising con-
straints on fluxes, such as the stoichiometric equations for fluxes.
In order to find

û ¼ argmin
u2Q

JðuÞ; (3)

different optimization methods can be considered. Finding û can be
performed by determining the solution of successive linearized
problems, as the in Gauss-Newton method (GN) with a first-order
Taylor expansion of gðxðuÞÞ with respect to u by the computation of
the sensitivity matrix x0ðuÞ. In the nonstationary case this n� p

matrix is time-dependent and satisfies a system of differential
equations, which means that it is very expensive to compute.
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In contrast, if the minimization is considered as a general non-
linear optimization problem, only the gradient of J needs to be
computed, as in the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
and Sequential Quadratic Problem (SQP) methods. In the 1970s the
adjoint state method was developed to compute the gradient in the
situation frequently encountered in control theory where the func-
tion to minimize depends indirectly on parameters through state
variables, with a minimal cost [4], [5], [6]. This cost is asymptoti-
cally independent of the number of parameters p, and is equivalent
to the cost of a single-state equation, while using the sensitivity
matrix generates a cost proportional to p.

3 STATIONARY MFA

The cumomer fraction variables x ¼ ðx1; . . . ; xN Þmodel introduced
in [9] means that the structure of balance equations in stationary
MFA is given by a cascade of linear algebraic equations. If xk
denotes the vector of cumomer fractions of weight k , x k the vector

of input cumomers of weight k, and x<k, x�k the sequences ðxiÞi< k

and ðxiÞi�k, respectively, then the state equation (2) can bewritten as

fkðv; x�k; x k Þ ¼ 0; 1 � k � N; (4)

where the function fk is affine with respect to xk as

fkðv; x�k; x �kÞ ¼ AkðvÞxk þ bkðv; x<k; x
 
�kÞ;

the matrix Ak and vector bk being determined by the structure of
the metabolic network under consideration. From the forward cas-
cade structure of (4), we successively obtain x1, x2; . . . ; xN by solv-
ing at each step a system of linear equations. For the sake of
conciseness we do not consider the terms which explicitly depend
on u in (1), but only labeling measurements. In this case, measure-
ments linearly depend on the state variable, so that the functional
to minimize is of the form

JðvÞ ¼ 1

2
kCxðvÞ � yk2;

for a given matrix C ¼ ðC1; . . . ; CNÞ depending on the measure-
ment model.

3.1 Direct Approach

For a given flux vector v, we first need to solve the state equation,
which provides the cumomer vector xðvÞ. The sequence of deriva-
tives ðx0kÞ1�k�N is then computed by solving each step of the for-

ward cascade (the sum in the second row vanishes for k ¼ 1)

AkðvÞx0k ¼ �@vfkðv; x�k; x �kÞ
þ
X
i < k

@xi bkðv; x<k; x
 
�kÞx0i; k � 1; (5)

which is obtained by implicit differentiation of (4) with respect to v.
Finally, the gradient of J is computed as

rJðvÞ ¼
XN
k¼1

x0kðvÞ>C>k ðCxðvÞ � yÞ; (6)

where the symbol > denotes vector and matrix transposition.

3.2 Adjoint Approach

The adjoint approach is based on the Lagrangian functional

Lðx; v; �Þ ¼ 1

2
kCx� yk2 þ

XN
k¼1

�>k fkðv; x�k; x �kÞ;

where � ¼ ð�kÞ1�k�N is the sequence of adjoint variables. Expand-
ing the adjoint equation @xLðx; v; �Þ ¼ 0 [6] leads to the backward

cascade (the sum vanishes for k ¼ N)

A>k ðvÞ�k ¼ C>k ðCx� yÞ
�
X
i> k

@xkbiðv; x< i; x
 
�iÞ>�i; k � N: (7)

For a given v, equations (7) are solved backwards, once the cumomer
vector xðvÞ has been computed from (4). This procedure provides
successively �N; �N�1; . . . ; �1. The gradient rJ can then be obtained
by the solutions of theN previous linear systems as follows

rJðvÞ ¼
XN
k¼1

@vfkðv; x�k; x �kÞ>�k: (8)

The adjoint approach can also be used to compute the derivative of
any function of xwith respect to vwithout requiring x0ðvÞ to be com-
puted. One example of this would be the output sensitivity matrix
SðvÞ ¼ Cx0ðvÞ, which may be used in first order sensitivity analysis
[10] and to compute confidence intervals for the estimated parame-
ters. This matrix is also used at each iteration of the optimization
method to compute the descent directionwhen aGauss-Newton type
algorithm is used [8]). In both usages, the adjoint approach allows
SðvÞ to be computed as a fraction ny=n of the usual cost, where ny is

the number ofmeasurements and n the size of cumomer vector x.
The adjoint approach can also be used to compute the deriva-

tive of any function of xwith respect to vwithout requiring x0ðvÞ to
be computed. One example of this would be the output sensitivity
matrix SðvÞ ¼ Cx0ðvÞ, which may be used t.

3.3 Computational Comparison

Both approaches involve the computation of the state xðvÞ in the com-
putation ofrJðvÞ. To achieve this, the matrices AkðvÞ need to be fac-
torized and the derivatives @vfk and @xi bk computed for i < k. The

crucial difference between the two approaches is to be found in the
two remaining equations: for a given k, equation (5) involves solving
a linear system whose right-hand side is a matrix with p columns,
whereas in equation (7) the right-hand side is a (single) column vec-
tor. A subsequent analysis of equations (6) and (8) shows that even
though the elementary operations are identical, the computation cost
of equation (8) differs from (6) in that @vfk is sparse, unlike x0k which

is full. While the difference remains negligible for small metabolic
networks, our numerical results show that the larger the network, the
more significant the reduction in computation cost.

We show in the following section that for nonstationary MFA
the improvements obtained from the adjoint approach are of the
same magnitude. But, since the problem is time-dependent,
the overall computation cost increases considerably. In order for
the problem to become tractable, the adjoint approach is essential.

4 NONSTATIONARY MFA

In nonstationary MFA, the balance equations are modeled by a cas-
cade of ordinary differential equations given for 1 � k � N by

xkð0Þ ¼ 0;

XkðmÞ d
dt

xkðtÞ ¼ fkðv; xðtÞ; x k Þ; t 2�0; T �:

8<
: (9)

To simplify the presentation we will consider that the pool sizes are
known. We consider that labeling measurements yj are made at
times t1 < � � � < tM , where 0 < t1 and tM < T , so that the func-
tional to minimize is given by

JðvÞ ¼ 1

2

XM
j¼1
kCxðtj; vÞ � yjk2;

where xðtj; vÞ is the solution of (9) at time tj.
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Since the cumomer fractions xk are time-dependent, the spaceX
of the labeling states is no longer a finite-dimensional vector space
as in stationary MFA, but an infinite-dimensional functional space

L2ð½0;T �Þ given by square-integrable functions. The inner product

ð�; �ÞX in X is the usual inner product in L2ð½0;T �Þ, i.e.,

ðf;cÞX ¼
R T

0 fðtÞ>cðtÞdt.

4.1 Direct Approach

As in the stationary case, the direct approach is based on the calcu-
lation of the partial derivative x0k with respect to the flux v. When
the sequence ðx0kÞ1�k�N is time-dependent, this approach involves

a cascade of ordinary differential equations

XkðmÞ d
dt

x0k ¼ @vfkðv; x�k; x �kÞ þAkðvÞx0k
þ
X
i< k

@xi bkðv; x�i; x �iÞx0i;
(10)

for 1 � k � N , obtained by the differentiation of (9) with respect to
the flux parameter v. In (10), the sum in the second row vanishes

for k ¼ 1, and d
dt x
0
k denotes the time derivative of x0k. The initial con-

dition related to (10) is given, for all k such that 1 � k � N , by
x0kð0Þ ¼ 0. The gradient of J is expressed as

rJðvÞ ¼
XM
j¼1

XN
k¼1

x0kðtj; vÞ>C>k ðCxðtj; vÞ � yjÞ: (11)

4.2 Adjoint Approach

In the adjoint approach, the N ODEs (9) are incorporated into a
Lagrangian functional as follows

Lðx; p; �Þ ¼ 1

2

XM
j¼1

CxðtjÞ � yj
�� ��2

þ
XN
k¼1

Z T

0

�>k ðtÞ fkðv; x�kðtÞ; x �kÞ �XkðmÞ d
dt

xkðtÞ
� �

dt:

The adjoint equation is obtained by expanding @xLðx; p; �Þ ¼ 0,
which leads to the following backwards-in-time ODE cascade

XkðmÞ d
dt

�k ¼ AkðvÞ>�k

�
X
i> k

@xkbiðv; x< i; x
 
�iÞ>�i;

(12)

for 1 � k � N , where the second row vanishes for k ¼ N and the
equalities read for t 2 ½0; T ½nftjg1�j�M . The final condition is given

for each k by �kðT Þ ¼ 0 and the following jump conditions

XkðmÞ½�k

�
tþj

�� �k

�
t�j

�� ¼ C>k ðCxðtjÞ � yjÞ; (13)

occur for j ¼ 1 . . .M . From (12), (13) we obtain the functions �kðtÞ
which enter into the gradient of J (with respect to v) as follows

rJðvÞ ¼
XN
k¼1

Z T

0

@vfkðv; x�kðtÞ; x �kÞ>�k dt: (14)

4.3 Discrete Time Schemes

Both the direct and the adjoint approaches in nonstationary MFA
require state xðt; vÞ to be computed, and this can be done efficiently
using discrete schemes. From a time grid tn ¼ nh, with h ¼ T=NT

(NT þ 1 denoting the total number of points sampling the interval
½0;T �), discrete schemes are based on approximating the integral of
the right-hand side of (9) over ½tn; tnþ1�. For the sake of simplicity
we consider the implicit Euler scheme, but a similar approach can
be used with schemes having a greater order, while also taking
into account the possible stiffness of the state equation, such as the
implicit trapezoidal rule [11] or implicit Runge-Kutta schemes [12].

Denoting the approximations xnk ’ xkðtnÞ and xn�k ’ x�kðtnÞ, the
implicit Euler scheme gives the following discrete version of (9)

x0k ¼ 0;

XkðmÞ xnþ1k � xnk
� � ¼ hfkðv; xnþ1�k ; x �kÞ;

(
(15)

where the second row has to be considered for 0 � n < NT , and
the objective function is given by

JðvÞ ¼ 1

2

XM
j¼1
kCxnðjÞ � yjk2;

where tnðjÞ ¼ tj, i.e., each measurement time is assumed to corre-
spond to a sampling point of the time grid.

In the direct approach, implicit derivation of scheme (15) with
respect to v and applying the Euler scheme to the continuous time
equation (10) provides the approximated derivatives x0k at sam-

pling points tn by solving

XkðmÞðx0nþ1k � x0nk Þ ¼ hAkðvÞx0nþ1k þ h@vfk
�
v; xnþ1�k ; x �k

�
þ h

X
i< k

@xi bk
�
v; xnþ1�i ; x �i

�
x0nþ1i ; (16)

combined with the initial condition x0 0k ¼ 0 for k ¼ 1 . . .N . From
the time-dependent state sequence and the time-dependent state
derivative sequence, the gradient is obtained by

rJðvÞ ¼
XM
j¼1

XN
k¼1
ðx0nðjÞk Þ>C>k ðCxnðjÞ � yjÞ: (17)

In the adjoint approach, the chosen discrete scheme generates NT

equalities incorporated into the Lagrangian functional by NT dis-
crete Lagrange multiplier ð�n

k Þ0�n<NT
. Considering all cumomer

fractions of weight k, we obtain the following discrete version of
the Lagrangian functional corresponding to (15)

Lðx; p; �Þ ¼ 1

2

XM
j¼1

CxnðjÞ � yj
�� ��2

þ
XN
k¼1

XNT�1

n¼0
ð�n

k Þ> hfk
�
v; xnþ1�k ; x �k

��XkðmÞ xnþ1k � xnk
� �� �

:

(18)

It should be emphasized that the discrete version of (12) must be
established by deriving the discrete Lagrangian (18), and not sim-
ply by choosing discrete schemes corresponding to (12) and (14).
The discrete adjoint equation is completely determined once a dis-
crete scheme is chosen for the state equation. For the Euler scheme
(15) and the Lagrangian (18), the discrete adjoint scheme is thus
given for n ¼ 1 . . .NT � 1 by

XkðmÞð�n
k � �n�1

k Þ ¼ hAkðvÞ>�n�1
k

� h
X
i> k

@xkbiðv; xn< i; x
 
�iÞ>�n�1

i þ dn;
(19)

with final condition �
NT�1
k ¼ 0 and

dn ¼
C>k ðCxn � yjÞ; if n ¼ nðjÞ;

0; otherwise;

(

which determines ð�n
k Þ0�n<NT

for each weight k. Finally, the gradi-
ent of J at v is given by

rJðvÞ ¼ h
XN
k¼1

XNT�1

n¼0
@vfk

�
v; xnþ1�k ; x �k

�>
�n
k : (20)

4.4 Computational Comparison

As in the stationary case, the computation of rJðvÞ in both the
direct and the adjoint approaches involves computing the time-
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dependent state x, and the associated cost will depend on the dis-
crete scheme that is chosen. Once again, the difference between the
two approaches lies in the cascades (10) and (12): in the direct
approach we have N differential equations with p-column matri-
ces, whereas in the direct approach the left-hand side of (12) con-
tains 1-column vectors. Hence, at the very least, we should expect
a gain equivalent to the gain obtained in the stationary case.

Another interesting aspect of the adjoint approach appears
when the pool sizes are also unknown: in the direct approach equa-
tion (10) has to be implicitly derived with respect tom, which leads
to a more complex system to express and to solve than (10). In con-
trast, in the adjoint approach the structure of the system (12) is
independent of the choice of parameters. It is only at the final step
(14) in the computation of the gradient that the choice of parame-
ters has an impact.

5 IMPLEMENTATION

The methods and algorithms described in this paper have been
included in the sysmetab software package, distributed under an
Open Source license via http://forge.scilab.org/index.php/p/
sysmetab/ and available for Linux and MacOSX platforms.

In order to be processed by sysmetab, metabolic network
description, carbon atom transition map and measurements (sta-
tionary or nonstationary Mass Spectrometry (MS) or Nuclear Mag-
netic Resonance spectroscopy (NMR) data) need to be coded in a
plain text XML that respects the FML (Flux Markup Language) for-
mat developed for the 13CFlux2 software package [7] (whereas
13CFlux2 only handles stationary problems, the FML input format
also allows nonstationary data to be described). For stationary data,
13CFlux2 also supports input files in the older FTBL format, which
it automatically converts to FML format. The sysmetab software
parses the input file and generates a flux identification program in
the Scilab language [13] that is specific to the network under consid-
eration. After execution, results are output to a plain text XML file
conforming to the Forward Simulation Markup Language devel-
oped for the 13CFlux2 software. This file can easily be converted
into other file formats, and the fact that sysmetab is a command-
line tool makes scripting and batch processing straightforward.

Using the adjoint approach is not the only innovative feature of
the software. Another novel aspect is the technique chosen for gen-
erating the code: starting from the original FML file, the Scilab pro-
gram is entirely generated using XSL transformations (http://
www.w3.org/TR/xslt). These transformations are specified in XSL
stylesheets, written in another XML dialect. XSL is very different
from other programming languages in use today in that it is a
declarative (as opposed to imperative) language. XSL stylesheets
have the advantage of being explicit, readable by humans and easy
to debug and maintain. The program is generated in several steps,
the final step being the transformation of the XML program
description into the actual Scilab program. This final step may eas-
ily be adapted for other script languages such as Matlab (http:/
www.mathworks.com) or Julia (http://julialang.org).

The generated program makes full use of Scilab’s potential for
improving the speed of calculations: vectorization and sparse
matrices are used, and UMFPACK multi-frontal LU factorization
[14] is used for calculating the state and adjoint state. The optimiza-
tion phase is performed using the Feasible Sequential Quadratic
Programming (FSQP) algorithm [15], which is available as a Scilab
module. Linearized statistics or Monte-Carlo simulations can be
used to determine confidence intervals on estimated fluxes. Where
Monte-Carlo simulations are used, Scilab allows for parallel execu-
tion of the optimization algorithm in a multi-core architecture.

6 NUMERICAL RESULTS

As an example, we considered the central metabolism of E. Coli,
described in [16] and provided in the network examples in the

influx_s distribution (the file e_coli.ftbl). The experimental
stationary data consist of mass spectrometry measurements of the
intermediate metabolites Suc, ICit, PEP, PGA, FruBP, Glc6P, Fru6P,
Rib5P, Gnt6P, and of the extracellular flux of Acetate. For the adjoint
versus direct comparison in the stationary case, the original data
were used. For the nonstationary case, synthetic noisy data were
generated by a forward nonstationary simulation using the esti-
mated values of flux from the stationary data and some realistic
pool sizes (the file e_coli_ns.fml in the sysmetab distribution).

The results presented in this section were obtained on a dedi-
cated Linux server hosting two 10-core Xeon E5-2660 v2 (2.20 GHz)
processors with Scilab 5.5.2. Unless explicitly stated otherwise,
computations used only one core of the processor, and every
reported running time is the median over 10 runs. Although the
running times themselves may be very different if different hard-
ware is used, we assume that the ratios between the different run-
ning times will remain similar.

6.1 Adjoint versus Direct Gradient Computation

6.1.1 Stationary Data

Table 1 compares the average computation times from steps (5), (6)
in the direct approach with steps (7), (8) in the adjoint approach. We
report the computation times required for solving the state equation
so that the overall times of the two approachesmay be compared. In
Table 1, time results from the reduced network (using the back-
wards tracing method [17]) of 1,069 cumomers are contrasted with
those obtained from the full original network of 5,455 cumomers.

Since there are almost five times as many cumomers in the full
network as in the reduced network, the time needed to compute
the state derivative rises. In the direct approach, the contribution of
this step to the overall time increases the ratio between the two
approaches to approximately 10. In the adjoint approach, the size
of the state derivative computation is in relation relation to overall
time is smaller. The distribution of overall time reported in Table 1
clearly shows the efficiency of the adjoint computation in compari-
son with the direct computation.

6.1.2 Nonstationary Data

Using the same network, we obtained estimated flux values from
stationary data (given in the next section) and combined them with
arbitrary pool size values comprising pool size measurements
available in [16]. The resulting values were used to simulate the
time course of labeling states. We obtained the data by running the
implicit ODE scheme (15) up to a fixed terminal time T , and select-
ing the simulated measurements at time values tj; j ¼ 1; . . . ;M .

Gaussian noise was then added by considering the standard devia-
tion values of each of the original stationary labeling state data
values.

TABLE 1
sysmetab Direct versus Adjoint Average Computation Times and

Ratios for the Reduced and Full E. Coli Network with Stationary Data

Direct Adjoint Ratio

Reduced network

State computation (4) 1.5 1.5 1
Cascade (5) versus (7) 6 0.35 17.5
Gradient assembly (6) versus (8) 0.9 0.05 17.2
Total 8.4 1.9 4.47

Full network

State computation (4) 3.5 3.5 1
Cascade (5) versus (7) 47.2 1.5 31
Gradient assembly (6) versus (8) 4.2 0.2 19
Total 55 5.2 10.6

Time unit = 10�3 s.
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The different time values comprise 10 equally distributed val-
ues up to tM ¼ 10 seconds, namely tj ¼ j for j ¼ 1; . . . ; 10. We
make use of the unconditionally stable property of the implicit
Euler scheme in order to set the time step h to tM=200. Other
experiments show that the outcome x does not vary significantly
for smaller values of h.

For the gradient computation, andmore generally for the param-
eter estimations, we chose a value of h larger than that used to gen-
erate the simulated data, typically h ¼ tM=100, so that the time
discretization of the grid is not the same as for the forward problem.

Applying the same computation time analysis to these time-
dependent data that we applied in the case of stationary MFA, we
report the time distribution of the different steps of the gradient
computation: state computation, cascade computation and gradi-
ent assembly, namely (15), (16), (17) for the time-dependent direct
approach, and (15), (19), (20) for the time-dependent adjoint
approach.

For the reduced E. Coli network, associated computation times

are presented in Table 2. As expected, the time required to compute

the state derivative using the direct method (row 2) is greater than

the stationary cascade cost (see the second row of Table 1) multi-

plied by the overall number of time steps (i.e., 100). The cost of the

state derivative (direct) cascade in the nonstationary case is in fact

more than 150 times the cost of one stationary (direct) cascade. The

ratio between the direct approach and the adjoint approach is 60,

which demonstrates the efficiency of the adjoint approach. The ratio

of over 18 for overall gain is seen to be significantly better than the

ratios obtained in the stationary case: the adjoint approach benefits

from the nonstationary case, while the direct gradient computation,

as expected, is seen to be severely time consuming.

6.2 Assessment of Parameter Estimates

6.2.1 Stationary Data

After comparing the adjoint and the direct approach in sysmetab

we consider its validation by performing the complete estimation
from stationary data. The provided e_coli.ftbl file was proc-
essed in influx_s with the –emu command line option. In addi-
tion, after conversion to the FML format, it was processed first
with the last version of 13CFlux2with default options and then in
sysmetab with the command line options –reg=0 (the default
regularization term is not added to the RSS). Table 3 presents the
flux values obtained after optimization, (exchange fluxes given by
influx_s have been converted from normalized ½0; 1½ values to
½0;þ1½ interval)) and the final value of the RSS function JðvÞ.

As the exchange flux eno.x is nearly non-identifiable, the default
upper bound is reached by sysmetab and influx_s. We tried to
add the constraint explicitly in the FML file before running
13CFlux2, but the optimization stopped with a very large value

of the RSS. We therefore do not include 13CFlux2 in the discus-
sion below, since we were not able to solve this problem.

As influx_s and sysmetab give very similar results, we com-
pare their respective behavior in terms of overall computation
time, which includes code generation, optimization to obtain the
optimal flux values, and linear statistics to obtain their confidence
intervals. On the well-defined and quickly converging example of
e_coli.ftbl, the fastest is influx_s (6.7 versus 11.9 seconds for
sysmetab). But if we only consider optimization time, sysmetab
is seen to be more efficient (0.35 versus 0.74 seconds for influx_s).
Comparing sub-second results for a particular network may not be
so informative, and we therefore considered a Monte-Carlo estima-
tion of flux statistics with 1,000 data samples, using all available
cores of the processors. In this typical situation where the code has
to be generated only once, influx_s took 105 seconds and sysme-

tab 24 seconds.
We did the same Monte Carlo study involving 1,000 samples on

a poorly defined network describing the central metabolism of E.
Coli and reactions for amino acid biosynthesis (the file Ecoli.1.

ftbl, available as part of the [8] additional material). Here,
influx_s shows its superiority in terms of numerical stability. But
even though sysmetab requires more (but less costly) iterations
than influx_s for each optimization, it is faster than influx_s, ter-
minating in 110 seconds instead of 480.

6.2.2 Nonstationary Data

We are first interested in checking wether the time-dependent

labeling measurements are best fitted. Fig. 1 shows the reconstruc-

tion of mass isotopomer fractions of measured metabolites using

the free fluxes and pool size values obtained after optimization.

Comparing these simulated data with the different time measure-

ments marked with circles demonstrates that synthetic data are

well recovered. The estimated pool sizes and the estimated flux

values obtained from the nonstationary data are reported in Table 4

and contrasted with the fluxes obtained from the stationary data.

The 95 percent confidence intervals were computed from the

empirical repartition of optimal parameters, estimated by the

Monte Carlo method (1,000 resamplings of stationary and nonsta-

tionary data were used). We first note that the estimated values

obtained from time-dependent labeling state data are similar to

those obtained from the stationary state. Then, focusing on the con-

fidence intervals of fluxes, we note that for almost all of them, con-

sidering 10 measurements during the transient phase gives better

accuracy than using a single measurement when the stationary

TABLE 2
sysmetab Direct versus Adjoint Average Computation Times and

Ratios for the Reduced and Full E. Coli Network with Nonstationary Data

Direct Adjoint Ratio

Reduced network

State computation (15) 21 21 1
Cascade (16) versus (19) 948 15 60
Gradient assembly (17) versus (20) 11 16 0.70
Total 980 53 18.4

Full network

State computation (15) 87 87 1
Cascade (16) versus (19) 11,214 178 63
Gradient assembly (17) versus (20) 118 90 1.3
Total 11,420 355 32

Time unit = 10�3 s.

TABLE 3
Estimated Free Flux Values and Final RSS Obtained by

influx_s, sysmetab, and 13CFlux2

Software influx_s sysmetab 13CFlux2

Free fluxes

Glucupt_1.n 0.80651342 0.80651338 0.80634528
gnd.n 0.14223488 0.14223479 0.13804339
out_Ac.n 0.21300000 0.21300001 0.21299847
pyk.n 1.54425504 1.54425507 1.52116680
zwf.n 0.14233488 0.14233479 0.14145512
ald.x 0.72497526 0.72497650 0.89824047
eno.x 999 999 98,486.1688
fum_a.x 0.43135328 0.43136935 0.40973977
ppc.x 0.17317878 0.17317925 0.17122549
ta.x 0.56653486 0.56653403 0.56756226
tk1.x 0.17878854 0.17878863 0.17125450
tk2.x 0 0 0.00213

Final RSS

61.5141593 61.5141593 62.0877059
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state is reached. As far as the pool sizes are concerned, for those

which have an associated measurement (in bold font), the measure-

ment is well recovered, but apart from Gnt6P all the pools have a

significantly larger confidence interval. The choice of measurement

times could be further optimized in order to improve the parame-

ter statistics.
If we now compare the computation time on our hardware for

the two approaches, we remark that estimating the fluxes and pool
size parameters takes almost 8 minutes using the direct method.
Using the adjoint method this estimation takes only 36 seconds (21
seconds just for the optimization) and the computation of confi-
dence intervals (Monte Carlo method with 1,000 samples) takes 13
minutes, which demonstrates the efficiency of the approach.

7 CONCLUSION

In this paper we address the MFA problem by making use of the
adjoint state, in the spirit of a general optimization problem gov-
erned by a state equation, as in control theory. The proposed meth-
ods and algorithms are included in the sysmetab software,
distributed under an Open Source license. In the stationary case,

results demonstrate the efficiency of the approach in terms of preci-
sion and computation timewhen a typicalmetabolic network is con-
sidered. Estimated values were validated against those obtained by
other reference software. With the adjoint framework, only vectors
(instead of matrices) are updated, which considerably speeds up
the computation of the gradient. In the nonstationary case, we con-
sidered the same network with synthetic noisy data. On our hard-
ware and using 100 time steps of the ODE integration scheme, a
forward simulation followed by the adjoint gradient computation
takes 53 milliseconds, instead of almost 1 second when the gradient
is computed with the direct method, and a full estimation of fluxes
and pool sizes takes 36 seconds. These timingsmake the nonstation-
ary MFA problem computationally tractable for larger networks
andmake sysmetab competitive with other software.

Although sysmetab does not yet implement it, the EMU frame-
work can be used simultaneously with the adjoint approach, and
this simultaneous implementation could represent the best compu-
tational solution when only MS measurements are used. Although
this approach favors gradient-based methods, it can also be used in
Gauss-Newton type methods: in this case it allows the computation
of the output sensitivity matrix at the cost of ny adjoint gradients,
where ny is the size of themeasurement vector at a given time [12].

Our current development efforts include improving the speed

of the code generation step, and implementing high-order ODE

solvers and alternative methods for computing nonlinear confi-

dence intervals [18].
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