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1 Introduction

In this article, we are interested in the study of a conserved Caginalp phase-field model
with logarithmic potentials based on Maxwell-Cattaneo law for the heat conduction
with two temperatures.

Caginalp introduced in [6] (see also [7]) the following phase-field system

∂u

∂t
+ �2u − � f (u) = −�T , (1.1)

∂T

∂t
− �T = −∂u

∂t
, (1.2)

where u is the order parameter and T is the relative temperature (defined as T =
T̃ − TE , where T̃ is the absolute temperature and TE is the equilibrium melting
temperature). These equations model phase transition processes such as melting solid-
ification processes and have been studied, e.g., in [4,5,20] and [30]; see also, e.g.,
[2,14,15,18,43] and [45] for a similar phase-field model with a memory term. Equa-
tions (1.1)–(1.2) consist of the coupling of the Cahn–Hilliard equation introduced in
[8] and [9] with the heat equation.

These equations are known as the conserved phase-field mode, in the sense that,
when endowed with Neumann boundary conditions, the spatial average of the order
parameter and of the temperature are conserved quantities.

In this paper, we consider the conserved Caginalp phase-field model proposed in
[41], in whichwe consider the theory of two-temperature-generalized thermoelasticity
proposed in [48] and based on the Maxwell–Cattaneo law.

The generalized heat equation (1.2) is based on the usual Fourier law for heat
conduction. Now, one essential drawback of the Fourier law is that it predicts that
thermal signals propagate at an infinite speed, which violates causality (the so-called
paradox of heat conduction, see [13]). To overcome this drawback, or at least to
account for more realistic features, several alternatives to the Fourier law, based, for
example, on the Maxwell–Cattaneo law or recent laws from thermomechanics, have
been proposed and studied in, e.g., [24,25,35–38] and [39]. Indeed, introducing the
enthalpy

H = u + T , (1.3)

we can rewrite this equation as
∂H

∂t
= div q, (1.4)

where q is the thermal flux vector, and, assuming the Fourier law

q = −∇T , (1.5)

we recover (1.2).
In the late 1960’s, several authors proposed a heat conduction theory based on two

temperatures (see [10,11] and [12]). More precisely, one now considers the conductive
temperature T and the thermodynamic temperature θ . For time-independent problems
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the difference between these temperatures is proportional to the heat supply; they thus
coincide when there is no heat supply. However, for time-dependent problems, they
are generally different even in the absence of heat supply: this is in particular the case
for non-simple materials. In that case, the two temperatures are related as follows:

θ = T − �T (1.6)

and (1.1) should be replaced by

∂u

∂t
+ �2u − � f (u) = −�(T − �T ). (1.7)

In this article, we consider the theory of two-temperature-generalized thermoelas-
ticity proposed in [48] and based on the Maxwell-Cattaneo law.

In that case, in order to obtain the corresponding generalized heat equation, one
writes

∂H

∂t
= −div q, (1.8)

and
H = u + θ = u + T − �T , (1.9)

where the heat flux q satisfies the Maxwell-Cattaneo law [48],

q + τ
∂q

∂t
= −∇T , τ > 0. (1.10)

In particular, it follows from (1.8) that

τ
∂2H

∂t2
+ ∂H

∂t
= −div

(
q + τ

∂q

∂t

)
,

hence, in view of (1.10),

τ
∂2H

∂t2
+ ∂H

∂t
= �T . (1.11)

In this paper, we reformulate the problem in terms of the order parameter u and the
enthalpy H (see also [5] for the original conserved Caginalp phase-field system and
[34] for the nonconserved model based on the Maxwell–Cattaneo law). In particular,
introducing the enthalpy H = u + θ = u + T − �T , we can rewrite (1.2) and (1.7)
in the form

We thus deduce from (1.9) and (1.11) the generalized heat equation

(I − �)

(
τ

∂2T

∂t2
+ ∂T

∂t

)
− �T = −τ

∂2u

∂t2
− ∂u

∂t
. (1.12)

Here, the presence of the second derivative ∂2u
∂t2

makes the mathematical analysis of
the equation particularly difficult and, to overcome such a difficulty, we will rewrite
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the equation in a different way, keeping the enthalpy H as unknown. Indeed, it follows
from (1.9) and (1.11) that

(I − �)

(
τ

∂2H

∂t2
+ ∂H

∂t

)
= �(T − �T ),

hence

(I − �)

(
τ

∂2H

∂t2
+ ∂H

∂t

)
− �H = −�u (1.13)

and
∂u

∂t
+ �2u − �u − � f (u) = −�H . (1.14)

In [41], the authors studied the well-posedness of the conserved Caginalp system
(1.13)–(1.14), for regular nonlinear terms f and Dirichlet boundary conditions. It is
however important to note that, in phase transition, regular nonlinear terms actually
are approximations of thermodynamically relevant logarithmic ones of the form

f (s) = −2κ0s + κ1 ln

(
1 + s

1 − s

)
, (1.15)

with s ∈ (−1, 1) and 0 < κ1 < κ0, which follow from a mean-field model (see [9,32];
in particular, the logarithmic terms correspond to the entropy of mixing).

To our knowledge, there is no result on the original conserved Caginalp phase-field
system with the aforementioned logarithmic nonlinear terms (see however [20] for
dynamic boundary conditions; in that case, the situation is very different from that of
Neumann boundary conditions), whereas, [30] treats the original conserved Caginalp
model with regular nonlinear terms; see also [22] for a more general system, with a
nonlinear coupling between u and T .

The conserved Caginalp phase-field model was studied in [31] for the type III
thermomechanics theory and in [33] for the Maxwell Cattaneo law (see also [41],
with two temperatures), for regular nonlinear terms. Also, recently, the authors in [28]
study the nonconserved Caginalp phase-field model based on Maxwell Cattaneo law
with two temperatures and logarithmic potentials; note that, in that case, the strict
separation from the pure phases (see below) is easier, as one can use the comparison
principle for second-order parabolic equations for the equation for the order parameter.

In order to compare the logarithmic potentials with the cubic ones in the numerical
simulations thatwe perform,we choose the following cubic polynomial nonlinear term
f (s) = s3 − .8s, whose corresponding double-well potential F(s) = (s2 − .8)2/4
has two minima −.8 and .8 (see Fig. 1, left), and the logarithmic nonlinear term

f (s) = −2κ0s + κ1 ln(
1 + s

1 − s
), with (κ0, κ1) = (ln(3), 0.8), whose corresponding

double-well potential F(s) = κ0(1 − s2) + κ1(1 − s) ln(1 − s) + (1 + s) ln(1 + s)
has two minima −.8 and .8 (see Fig. 1,right).

In this article, we consider the conserved phase-field model (1.13)–(1.14), with the
logarithmic nonlinear terms (1.15). We first prove the existence of weak solutions to
equations (1.13)–(1.14). To do so, we approximate the singular nonlinear terms by
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regular ones and prove the convergence of the solutions to the approximated problems
to that to the limit singular one. Then, we prove the uniqueness of the solution, which
allows us to define the corresponding semigroup and prove the existence of a global
attractor. We then prove some higher-order regularity results which lead to a strict
separation property in two space dimensions. This strict separation property is very
important. On the one hand, it says that we actually have the same problem, but
now with a regular nonlinear term (even better, a bounded and regular one). On the
other hand, it says that, in the phase transition process, there is always some given
amount of the other phase. Note that such a strict separation property is not known
in three space dimensions, already for the sole Cahn–Hilliard equation. To prove it,
we adapt the techniques introduced in [21]. The difference here is that we have two
additional terms due to the presence of the Enthalpy H in which the regularity of
H plays an important role in order to have the strict separation property. Finally, we
write the spatial and time discretizations of (1.13)–(1.14), which allows us to compare
(numerically) the conserved Caginalp type model with regular and with logarithmic
nonlinear terms.

Notation

We denote by (( · , · )) the usual L2-scalar product, with associated norm ‖ · ‖. We

further set (( · , · ))−1 = (((−�)− 1
2 ·, (−�)− 1

2 ·)), with associated norm ‖ · ‖−1,
where (−�)−1 denotes the inverse minus Laplace operator associated with Dirich-
let boundary conditions. Note that ‖ · ‖−1 is equivalent to the usual H−1-norm on
H−1(�) = H1

0 (�)′. More generally, ‖ · ‖X denotes the norm in the Banach space X .
Throughout the article, the same letter c, c′ (and, sometimes, C) denotes (generally

positive) constants which may vary from line to line. Similarly, the same letter Q
denotes (positive) monotone increasing (with respect to each argument) functions
which may vary from line to line.

Setting the problemWeconsider the following initial and boundary value problem,
in a bounded and regular domain � ⊂ R

n , n = 1, 2 or 3, with boundary �:

Fig. 1 Double-well potential, polynomial (left) and logarithmic (right)
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(−�)−1 ∂u

∂t
− ε�u + u + 1

ε
f (u) = H , (1.16)

(I − �)

(
τ

∂2H

∂t2
+ ∂H

∂t

)
− �H = −�u, (1.17)

u = H = 0 on �, (1.18)

u|t=0 = u0, H |t=0 = H0,
∂H

∂t
|t=0 = H1, (1.19)

where, for simplicity, we have set ε and τ equals to one.
The potential f is defined by:

f (s) = −2κ0s + κ1 ln

(
1 + s

1 − s

)
, (1.20)

with s ∈] − 1, 1[ and 0 < κ1 < κ0. We then have

f ′(s) = 2κ1
1 − s2

− 2κ0. (1.21)

Furthermore, we see that

f ∈ C2(−1, 1), f (0) = 0, (1.22)

−c0 � F(s) � f (s)s + c0, (1.23)

f (s)s � c1| f (s)| − c1, (1.24)

where, F(s) =
∫ s

0
f (τ ) dτ and c0 � 0,

f ′(s) � −c2, c2 � 0. (1.25)

Now, we will consider the following space

K = {ϕ ∈ L2(�); −1 � ϕ � 1 a.e. in �}.

Following the idea of Debussche and Dettori (see [16] and [17]), we consider the
following approximated function fN ∈ C1(R), for N ∈ N, by

fN (s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f

(
−1 + 1

N

)
+ f ′

(
−1 + 1

N

)(
s + 1 − 1

N

)
, s < −1 + 1

N
,

f (s), |s| � 1 − 1

N
,

f

(
1 − 1

N

)
+ f ′

(
1 − 1

N

)(
s − 1 + 1

N

)
, s > 1 − 1

N
.
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Then, we consider the approximated problem:

(−�)−1 ∂uN

∂t
− �uN + uN + fN (uN ) = HN , (1.26)

(I − �)

(
∂2HN

∂t2
+ ∂HN

∂t

)
− �HN = −�uN , (1.27)

uN = HN = 0 on �, (1.28)

uN |t=0 = u0, HN |t=0 = H0,
∂HN

∂t
|t=0 = H1, (1.29)

Recalling that, owing to [41], we have the following result concerning to the problem
(1.26)–(1.29):

Theorem 1.1 We assume that fN satisfies (1.22)–(1.25) for s ∈ R. Then, for every
(u0, H0, H1) ∈ (H1

0 (�))3, the problem (1.26)–(1.29) possesses a unique solution

(uN , HN ,
∂HN

∂t
) such that

(
uN , HN ,

∂HN

∂t

)
∈ L∞(R+; H1

0 (�))3

and

∂uN

∂t
∈ L2(0, T ; H−1(�)), ∀T > 0.

We also note that, F is bounded and for ϕ ∈ K , we have FN (ϕ) � F(ϕ). Thus, all
the estimations in this section are uniform with respect to N .

Remark 1.1 We can also endow the problem with periodic or Neumann boundary
conditions. In these cases, we have, integrating (1.14) over �,

d〈u〉
dt

= 0, (1.30)

where 〈·〉 denotes the spatial average, hence

〈u(t)〉 = 〈u0〉, ∀t � 0, (1.31)

Similarly, integrating (1.17) over �, we obtain

d

dt

(
d〈H〉
dt

+ 〈H〉
)

= 0, (1.32)

which yields
d〈H〉
dt

+ 〈H〉 = 〈H0 + H1〉 (1.33)
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and
〈H(t)〉 = 〈H0 + H1〉 − 〈H1〉e−t , t � 0. (1.34)

Taking (1.38)–(1.34) into account, we can adapt the proofs below and derive the same
well-posedness results. Note however that, in order to study the existence of attractors,
we need to assume that

|〈u0〉| � M1, (1.35)

|〈H0 + H1〉| � M2, |〈H1〉| � M3. (1.36)

It thus follows from (1.31) and (1.34) that

|〈u(t)〉| � M1, ∀t � 0, (1.37)

|
(
d〈H〉
dt

+ 〈H〉
)

(t)| � M2, | d〈H〉
dt

(t)| � M3, |〈H(t)〉| � M2 + M3, ∀t � 0.

(1.38)

We can then define the family of solving operators

S(t) : �M → �M , (u0, H0, H1) �→ (u(t), H(t),
∂H

∂t
(t)), t ≥ 0,

where

�M (= �M1,M2,M3) =
{
(ϕ, θ, ξ) ∈ H2(�)3,

∂ϕ

∂ν
= 0 on �;

‖ϕ‖L∞(�) < 1, |〈ϕ〉| � M1, |〈θ + ξ 〉| � M2, |〈ξ 〉| � M3
}
.

We refer the interested reader to [40] for more details on the necessary modifications.

2 A Priori Estimates

We start by assuming a priori that:

‖u0‖L∞(�) � 1 − δ, δ ∈ (0, 1), (2.1)

where δ is a fixed positive constant.

We multiply (1.26) by
∂uN

∂t
, (1.27) by (−�)−1 ∂HN

∂t
and summing the resulting

equalities, to obtain

d

dt

(
‖∇uN‖2+2

∫
�

FN (uN ) dx + ‖uN − HN‖2 +
∥∥∥∥∂HN

∂t

∥∥∥∥
2

−1
+

∥∥∥∥∂HN

∂t

∥∥∥∥
2)

+ 2

(∥∥∥∥∂uN

∂t

∥∥∥∥
2

−1
+

∥∥∥∥∂HN

∂t

∥∥∥∥
2

−1
+

∥∥∥∥∂HN

∂t

∥∥∥∥
2)

= 0.

(2.2)
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Next, we multiply (1.26) by uN , (1.27) by (−�)−1HN and have, summing the
resulting inequalities, owing to (1.24),

d

dt

(
‖uN‖2−1 + ‖HN‖2−1 + ‖HN‖2 + 2

((
∂HN

∂t
, HN

))
−1

+ 2

((
∂HN

∂t
, HN

)))
+ c

(
‖uN − HN‖2

+ ‖∇uN‖2 + 2‖ fN (uN )‖L1(�)

)
� 2

(∥∥∥∥∂HN

∂t

∥∥∥∥
2

−1
+

∥∥∥∥∂HN

∂t

∥∥∥∥
2)

+ c′, c > 0.

(2.3)
Summing finally (2.2) and δ1 times (2.3), where δ1 > 0 is chosen small enough, we
have a differential inequality of the form

d

dt
EN
1 + c

(
EN
1 + ‖ fN (uN )‖L1(�) +

∥∥∥∥∂uN

∂t

∥∥∥∥
2

−1

)
� c′, c > 0, (2.4)

where

EN
1 = ‖∇uN ‖2 + 2

∫
�
FN (uN ) dx + ‖uN − HN ‖2 +

∥∥∥∥∂HN

∂t

∥∥∥∥
2

−1
+

∥∥∥∥∂HN

∂t

∥∥∥∥
2

+ δ1

(
‖uN ‖2−1 + ‖HN ‖2−1 + ‖HN ‖2 + 2

((
∂HN

∂t
, HN

))
−1

+ 2

((
∂HN

∂t
, HN

)))
,

(2.5)
satisfies

EN
1 � c

(
‖uN‖2H1(�)

+
∫

�

FN (uN ) dx + ‖HN‖2 +
∥∥∥∥∂HN

∂t

∥∥∥∥
2)

− c′, c > 0. (2.6)

We now multiply (1.27) by
∂HN

∂t
, to obtain

d

dt

(
‖∇HN‖2 +

∥∥∥∥∂HN

∂t

∥∥∥∥
2

H1(�)

)
+

∥∥∥∥∂HN

∂t

∥∥∥∥
2

H1(�)

� ‖∇uN‖2. (2.7)

Multiplying also (1.27) by HN , we find

d

dt

(
‖HN‖2H1(�)

+2

((
∂HN

∂t
, HN

))
+ 2

((
∇ ∂HN

∂t
,∇HN

)))
+ ‖∇HN‖2

� ‖∇uN‖2 + 2

∥∥∥∥∂HN

∂t

∥∥∥∥
2

H1(�)

.

(2.8)
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Summing (2.4), δ2 times (2.7) and δ3 times (2.8), where δ2, δ3 > 0 are chosen
small enough, we have a differential inequality of the form

d

dt
EN
2 + c

(
EN
2 + ‖ fN (uN )‖L1(�) +

∥∥∥∥∂uN

∂t

∥∥∥∥
2

−1

)
� c′, c > 0, (2.9)

where

EN
2 = EN

1 + δ2

(
‖∇HN‖2 +

∥∥∥∥∂HN

∂t

∥∥∥∥
2

H1(�)

)

+ δ3

(
‖HN‖2H1(�)

+ 2

((
∂HN

∂t
, HN

))
+ 2

((
∇ ∂HN

∂t
,∇HN

)))
,

(2.10)

satisfies

EN
2 � c

(
‖uN‖2H1(�)

+
∫

�

FN (uN ) dx + ‖HN‖2H1(�)
+

∥∥∥∥∂HN

∂t

∥∥∥∥
2

H1(�)

)
− c′, c > 0.

(2.11)
We note that (2.9) and Gronwall’s lemma imply the dissipative estimate

EN
2 (t) � e−ct EN

2 (0) + c′, c > 0, t � 0. (2.12)

Consequently, for N large enough,

‖uN (t)‖2H1(�)
+ ‖HN‖2H1(�)

+
∥∥∥∥∂HN

∂t

∥∥∥∥
2

H1(�)

� e−ct
(
‖u0‖2H1(�)

+ ‖H0‖2H1(�)
+ ‖H1‖2H1(�)

)
+ c′. (2.13)

Integrating now (2.9) with respect to time, we have, for r > 0 fixed,

‖ fN (uN )‖L1((t,t+r)×�)

� ce−c′t
(

‖u0‖2H1(�)
+ ‖H0‖2H1(�)

+ ‖H1‖2H1(�)
+

∫
�

FN (u0) dx

)
+ c′′(r).

(2.14)

Furtheremore, for every r > 0,

∫ t+r

t

∥∥∥∥∂uN

∂t

∥∥∥∥
2

−1
dτ

� ce−c′t
(

‖u0‖2H1(�)
+ ‖H0‖2H1(�)

+ ‖H1‖2H1(�)
+

∫
�

FN (u0) dx

)

+ c′′(r), c′ > 0, t � 0.

(2.15)
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Also note that
∫
�
FN (u0) dx � c, since, ‖u0‖L∞(�) � 1− δ. Therefore, (2.14) yields

have

‖ fN (uN )‖L1((t,t+r)×�) � ce−c′t
(
‖u0‖2H1(�)

+ ‖H0‖2H1(�)
+ ‖H1‖2H1(�)

+ c′′(r)
)

.

(2.16)
We have thus found an estimate on the L1-norm of fN (uN ).

We finally multiply (1.26) by −�uN and ontain, owing to (1.25) and classical
elliptic regularity results,

d

dt
‖uN‖2 + c‖uN‖2H2(�)

� c′(‖∇uN‖2 + ‖HN‖2), c > 0. (2.17)

In a second step, we differentiate (1.26) with respect to time to have the initial and
boundary value problem

(−�)−1 ∂

∂t

∂uN

∂t
− �

∂uN

∂t
+ ∂uN

∂t
+ f ′

N (uN )
∂uN

∂t
= ∂HN

∂t
, (2.18)

∂uN

∂t
= 0 on �, (2.19)

∂uN

∂t
(0) = �u0 − u0 − f (u0) + H0. (2.20)

Multiplying (2.18) by
∂uN

∂t
, we obtain, in view of (1.25),

1

2

d

dt

∥∥∥∥∂uN

∂t

∥∥∥∥
2

−1
+ c

∥∥∥∥∂uN

∂t

∥∥∥∥
2

H1(�)

� c0

∥∥∥∥∂uN

∂t

∥∥∥∥
2

+
((

∂HN

∂t
,
∂uN

∂t

))
, (2.21)

which yields, employing the interpolation inequality

∥∥∥∥∂uN

∂t

∥∥∥∥
2

� c

∥∥∥∥∂uN

∂t

∥∥∥∥−1

∥∥∥∥∂uN

∂t

∥∥∥∥
H1(�)

, (2.22)

the differential inequality

d

dt

∥∥∥∥∂uN

∂t

∥∥∥∥
2

−1
+ c

∥∥∥∥∂uN

∂t

∥∥∥∥
2

H1(�)

� c′
(∥∥∥∥∂HN

∂t

∥∥∥∥
2

+
∥∥∥∥∂uN

∂t

∥∥∥∥
2

−1

)
. (2.23)

This yields an L∞(L2)-regularity on (−�)−1 ∂uN

∂t
(0) ∈ L2(�), which, in view of

(2.20), essentially means that u0 ∈ H3(�)∩H1
0 (�). This is not satisfactory, in partic-

ular, in view of the study of the dissipativity and the existence of (finite dimensional)
attractors.
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We multiply now (1.27) by −�
∂HN

∂t
and −�HN to obtain

d

dt

(
‖�HN‖2 +

∥∥∥∥∇ ∂HN

∂t

∥∥∥∥
2

+
∥∥∥∥�

∂HN

∂t

∥∥∥∥
2)

+
∥∥∥∥∇ ∂HN

∂t

∥∥∥∥
2

+
∥∥∥∥�

∂HN

∂t

∥∥∥∥
2

� ‖�uN‖2
(2.24)

and

d

dt

(
‖∇HN ‖2+‖�HN ‖2 + 2

((
∇ ∂HN

∂t
, ∇HN

))
+ 2

((
�

∂HN

∂t
, �HN

)))
+ ‖�HN ‖2

� ‖�uN ‖2 + 2

(∥∥∥∥∇ ∂HN

∂t

∥∥∥∥
2

+
∥∥∥∥�

∂HN

∂t

∥∥∥∥
2)

,

(2.25)
respectively. Summing (2.24) and δ4 times (2.25), where δ4 > 0 is chosen small enough, we
find a differential inequality of the form

dEN
3

dt
+ cEN

3 � c′‖�uN ‖2, (2.26)

where

EN
4 = ‖�HN ‖2 +

∥∥∥∥∇ ∂HN

∂t

∥∥∥∥
2

+
∥∥∥∥�

∂HN

∂t

∥∥∥∥
2

+ δ4

(
‖∇HN ‖2 + ‖�HN ‖2 + s

((
∇ ∂HN

∂t
, ∇HN

))
+ 2

((
�

∂HN

∂t
, �HN

)))

(2.27)
satisfies

EN
3 � c

(
‖HN ‖2H2(�)

+
∥∥∥∥∂HN

∂t

∥∥∥∥
2

H2(�)

)
, c > 0. (2.28)

Gronwall’s lemma then yields that HN ,
∂HN

∂t
∈ L∞(0, T ; H2(�)).

3 Existence of Solutions in the Case n � 3

Theorem 3.1 Let (u0, H0, H1) ∈ (H2(�) ∩ H1
0 (�))3, then the problem (1.16)–(1.19) admits

atleast one solution (u, H ,
∂H

∂t
) such that, ∀T > 0

u ∈ L∞(R+; H1
0 (�)) ∩ L2(0, T ; H2(�)),

∂u

∂t
∈ L2(0, T ; H−1(�))

and

(
H ,

∂H

∂t

)
∈ L∞(R+; (H2(�) ∩ H1

0 (�)))2.
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Furthermore, ∀T > 0, ‖u(t)‖L∞(�) � 1, the set {x ∈ �, |u(t, x)| � 1} is of null measure.
Proof We have, owing to (2.13), that

sup
t∈[0,T ]

{
‖uN (t)‖2H1(�)

+ ‖HN (t)‖2H1(�)
+

∥∥∥∥∂HN

∂t
(t)

∥∥∥∥
2

H1(�)

}
� c′, (3.1)

where c′ is independent of N .
Letting N tends to +∞ and considering a subsequence, we have by estimation (3.1)

uN → u weak star in L∞(0, T ; H1(�)), (3.2)

HN → H weak star in L∞(0, T ; H1(�)), (3.3)
∂HN

∂t
→ ∂H

∂t
weak star in L∞(0, T ; H1(�)). (3.4)

Integrating (2.9) between 0 and t , we have, in view of (3.1),

EN
2 (t) + c

∫ t

0

∥∥∥∥∂uN
∂t

∥∥∥∥
2

−1
ds � c′, ∀t ∈ [0, T ], c � 0, (3.5)

where c′ is independent of N . It thus follows that

∂uN
∂t

→ ∂u

∂t
weakly in L2(0, T ; H−1(�)). (3.6)

Integrating (2.17) between 0 and t , we deduce

‖uN (t)‖2 + c
∫ t

0
‖uN (t)‖2H2(�)

ds � c, ∀t ∈ [0, T ], (3.7)

where c is independent of N . This results that

�uN⇀�u weakly in L2((0, T ) × �). (3.8)

The only difficulty, when passing to the limit, is to pass to the limit in the nonlinear terms
containing fN . First, it follows from (2.16) that fN (uN ) is bounded, independently of N , in
L1((0, T ) × �). Then, it follows from the explicit expression of fN that

meas(FN ,M ) � μ

(
1

N

)
, N � M,

where

FN ,M =
{
(t, x) ∈ (0, T ) × �; |uM (t, x)| > 1 − 1

N

}

and

μ(s) = c

min(| f (1 − s)|, | f (s − 1)|) ,
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where, here, the constant c is independent of N and M . Note that there holds

∫ T

0

∫
�

| fM (uM )| dx dt �
∫
FN ,M

| fM (uM )| dx dt � c′ meas (FN ,M )
1

μ(
1

N
)

, (3.9)

where the constant c′ is independent of N and M .
Passing now to the limit M tends to +∞ (employing Fatou’s lemma on (3.9)) and the N

tends to +∞ (noting that lim
s→0

μ(s) = 0) to find

meas{(t, x) ∈ (0, T ) × �; |u(t, x)| � 1} = 0,

so that
− 1 < u(t, x) < 1 a.e. (t, x). (3.10)

Next, it follows from the above almost everywhere convergence of uN , (3.10) and the explicit
expression of fN that

fN (uN ) → f (u) a.e. (t, x) ∈ (0, T ) × � (3.11)

Multiplying now (1.26) by fN (uN ) and integrate over �, using the monotony of fN , we
obtain

‖ fN (uN )‖2 � c

(∥∥∥∥∂uN
∂t

∥∥∥∥
2

−1
+ ‖HN ‖2 + ‖uN ‖2H1(�)

)
, (3.12)

integrating (3.12) between 0 and t by (3.2), (3.3) and (3.6), we have

‖ fN (uN )‖2L2((0,T )×�)
� c, (3.13)

where c is independent of N . Thus, it follows from (3.11) that

fN (uN (t)) → f (u) weakly in L2((0, T ) × �)), (3.14)

which finishes the proof of the passage to the limit (the weak continuity property follows from
Strauss’s lemma, see, e.g., [47]). ��

The following result gives us the uniqueness of the solution of the problem (1.16)–(1.19).

Theorem 3.2 Under the assumptions of Theorem 3.1, the problem (1.16)–(1.19) admits a unique
solution with the above regularity.

Proof Let

(
u(1), H (1),

∂H (1)

∂t

)
and

(
u(2), H (2),

∂H (2)

∂t

)
be two solutions to (1.16)–(1.19)

with initial data

(
u(1)
0 , H (1)

0 , H (1)
1

)
and

(
u(2)
0 , H (2)

0 , H (2)
1

)
, respectively. We set

(
u, H ,

∂H

∂t

)
=

(
u(1), H (1),

∂H (1)

∂t

)
−

(
u(2), H (2),

∂H (2)

∂t

)
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and

(
u0, H0, H1

)
=

(
u(1)
0 , H (1)

0 , H (1)
1

)
−

(
u(2)
0 , H (2)

0 , H (2)
1

)

and have

(−�)−1 ∂u

∂t
− �u + u + f

(
u(1)) − f

(
u(2)) = H , (3.15)

(I − �)

(
∂2H

∂t2
+ ∂H

∂t

)
− �H = −�u, (3.16)

u = H = 0 on �, (3.17)

u|t=0 = u0, H |t=0 = H0,
∂H

∂t
|t=0 = H1. (3.18)

Multiplying (3.15) by u, (3.16) by (−�)−1 ∂H

∂t
, summing the resulting inequalities, we

obtain, in view of (1.25), a differential inequality of the form

dE

dt
+ ‖u‖2H1(�)

� c(‖u‖2 + ‖H‖2), (3.19)

where

E = ‖u‖2−1 + ‖H‖2 +
∥∥∥∥∂H

∂t

∥∥∥∥
2

−1
+

∥∥∥∥∂H

∂t

∥∥∥∥
2
, (3.20)

satisfies

E � c

(
‖u‖2−1 + ‖H‖2 +

∥∥∥∥∂H

∂t

∥∥∥∥
2)

, c > 0. (3.21)

Using finally the interpolation inequality

‖u‖2 � c‖u‖−1‖u‖H1(�),

we find the differential inequality
dE

dt
� cE, (3.22)

hence, owing to (3.21)–(3.22) and Gronwall’s lemma

‖u(t)‖2−1 + ‖H(t)‖2 +
∥∥∥∥∂H

∂t
(t)

∥∥∥∥
2

� cec
′t (‖u0‖2−1 + ‖H0‖2 + ‖H1‖2), t � 0, (3.23)

hence the uniqueness, as well as the continuous dependence with respect to the initial data in
the H−1 × L2 × L2-norm. ��

It follows from Theorem 3.1 that we can define the family of solving operators

S(t) : �1 → �, (u0, H0, H1) → (u(t), H(t),
∂H(t)

∂t
), t � 0,
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where

� :=
{(

u, H ,
∂H

∂t

)
∈ H1(�)3; |u| < 1 a.e.

}

and

�1 := � ∩
{(

u, H ,
∂H

∂t

)
∈ L∞(�) × H1(�)2; ‖u‖L∞(�) < 1

}
.

We then deduce from (2.13) the

Theorem 3.3 The semigroup S(t) is dissipative in H1(�)3, in the sense it possesses a bounded
absorbing set β1 ⊂ H1(�)3 (i.e., ∀B ⊂ �1 bounded, ∃t0 = t0(B) such that t � t0 ⇒
S(t)B ⊂ β1).

We now assume that
lim

s→±1
F(s) = c, (3.24)

where c is a constant (note that this holds for the thermodynamically relevant logarithmic
potentials). Then, S(t) is a semigroup now (i.e. S(0) = I (identity operator) and S(t + τ) =
S(t) ◦ S(τ ), t, τ � 0) defined on �.

As a consequence of Theorem 3.3 and of (3.24), it follows from standard results (see, e.g.
[3,29,42,46]) that we have the following theorem.

Theorem 3.4 The semigroup S(t) possesses the global attractor A on � (i.e. A is compact in
H−1(�) × L2(�) × L2(�), bounded in �, invariant and attracts the images of all bounded
subsets of � with respect to the topology of H−1(�) × L2(�) × L2(�)).

Remark 3.1 In order to prove that one has the global attractor and, in particular, the attraction
property in the natural topology of the phase space �, one would need additional regularity on
the solutions or the strict separation property from the singular values ±1 which we are able to
prove it in two dimensional space (see Section 5 below). We can also note that it follows from
(3.23) that we can extend, in a unique way and by continuity, the semigroup S(t) to the closure
of � in the H−1(�) × L2(�) × L2(�)-topology, namely to

� =
{(

u, H ,
∂H

∂t

)
∈ L∞(�) × H1(�)2; ‖u‖L∞(�) � 1

}
.

The corresponding semigroup again possesses the global attractor which is precisely A.

4 Further Regularity Results

In what follows, we set V = H1
0 (�). We also denote by V ′ its dual space and by ‖ · ‖V ′ its

norm.
We can decompose the singular potential F as

F(x) = S(x) − θ0

2
x2,
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with

lim
x→−1

S′(x) = −∞, lim
x→+1

S′(x) = +∞, S′′(x) � θ > 0, ∀x ∈ (−1, 1) (4.1)

and we let
θ − θ0 = α > 0. (4.2)

We report here below a Trudinger–Moser type inequality (see, e.g., [44]) which will be
needed later.

Lemma 4.1 Let � be a bounded smooth domain of R2. Then, there exists a positive constant C
such that ∫

�
e|u| dx � CeC‖u‖2V , ∀u ∈ V . (4.3)

Let us now define the free energy functional

E(u) = 1

2

(
‖u‖2H1(�)

+ 2
∫
�
F(u) dx + ‖H‖2 − 2((H , u)) +

∥∥∥∥∂H

∂t

∥∥∥∥
2

+
∥∥∥∥∂H

∂t

∥∥∥∥
2

−1

)
.

(4.4)
Rewriting Eq. (1.16) in the equivalent form

∂u

∂t
= �μ, (4.5)

μ = −�u + u + F ′(u) − H . (4.6)

Theorem 4.1 Let u0 ∈ V such that F(u0) ∈ L1(�). Then, there exists a unique solution
u ∈ C([0, T ], V ) which fulfills the dissipative estimate

E(u(t), H(t), ∂t H(t)) +
∫ t+1

t

{
‖∇μ(τ)‖2 +

∥∥∥∥∂H

∂t
(τ )

∥∥∥∥
2

+
∥∥∥∥∂H

∂t
(τ )

∥∥∥∥
2

−1

}
dτ

� E(u0, H0, H1), ∀t � 0. (4.7)

Proof The existence and uniqueness of the solution can be proved in the same way as in section
3. Therefore, we confine ourselves only to the proof of (4.7).
We start by differentiating Eq. (1.16) with respect to time to find

(−�)−1 ∂

∂t

∂u

∂t
− �

∂u

∂t
+ ∂u

∂t
+ f ′(u)

∂u

∂t
= ∂H

∂t
, (4.8)

∂u

∂t
= 0 on �, (4.9)

Multiplying (4.8) by t
∂u

∂t
, then using (1.25), we obtain

1

2

d

dt

(
t

∥∥∥∥∂u

∂t

∥∥∥∥
2

−1

)
+ t

∥∥∥∥∂u

∂t

∥∥∥∥
2

H1(�)

� 1

2

∥∥∥∥∂u

∂t

∥∥∥∥
2

−1
+ c′t

∥∥∥∥∂u

∂t

∥∥∥∥
2

+ t

((
∂H

∂t
,
∂u

∂t

))
. (4.10)
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Employing the interpolation inequality

∥∥∥∥∂u

∂t

∥∥∥∥
2

� c′
∥∥∥∥∂u

∂t

∥∥∥∥−1

∥∥∥∥∇ ∂u

∂t

∥∥∥∥
� c′

∥∥∥∥∂u

∂t

∥∥∥∥
2

−1
+ 1

2

∥∥∥∥∇ ∂u

∂t

∥∥∥∥
2
,

we find

1

2

d

dt

(
t

∥∥∥∥∂u

∂t

∥∥∥∥
2

−1

)
+ ct

∥∥∥∥∂u

∂t

∥∥∥∥
2

H1(�)

� 1

2

∥∥∥∥∂u

∂t

∥∥∥∥
2

−1
+ c′t

(∥∥∥∥∂u

∂t

∥∥∥∥
2

−1
+

∥∥∥∥∂H

∂t

∥∥∥∥
2
)

. (4.11)

We deduce from (2.15)–(2.16) (which hold when N → +∞), (4.11), and Gronwall’s lemma
that ∥∥∥∥∂u

∂t
(t)

∥∥∥∥
2

−1
� 1

t
Q(‖u0‖H1(�), ‖H0‖H1(�), ‖H1‖H1(�)), t ∈ (0, 1]. (4.12)

Multiplying (4.8) by
∂u

∂t
and using (1.25) and an interpolation inequality, we have

d

dt

∥∥∥∥∂u

∂t

∥∥∥∥
2

−1
+ c

∥∥∥∥∂u

∂t

∥∥∥∥
2

H1(�)

� c′
(∥∥∥∥∂H

∂t

∥∥∥∥
2

+
∥∥∥∥∂u

∂t

∥∥∥∥
2

−1

)
. (4.13)

Finally, we conclude from (4.12), (4.13) and Gronwall’s lemma that

∥∥∥∥∂u

∂t
(t)

∥∥∥∥
2

−1
� ect Q(‖u0‖H1(�), ‖H0‖H1(�), ‖H1‖H1(�)), t � 1, (4.14)

where Q denotes a monotone increasing function.
Integrating now (4.13) between t and t + 1 and using (4.14), we find

∫ t+1

t

∥∥∥∥∂u

∂t

∥∥∥∥
2

H1(�)

dt � ect Q(‖u0‖H1(�), ‖H0‖H1(�), ‖H1‖H1(�)), (4.15)

for t � 1. Therefore,
∂u

∂t
∈ L2(t, t + 1; H1(�)).

Then, Eq. (4.5) is equivalent to

((ut , v)) + ((∇μ, ∇v)) = 0, ∀v ∈ H1
0 (�). (4.16)

Using equation (4.16) and the standard chain rule in L2(0, T ; V ) ∩ H1(0, T ; V ′), we get
the energy equality

d

dt
E(u, H , ∂t H) + ‖∇μ‖2 +

∥∥∥∥∂H

∂t

∥∥∥∥
2

+
∥∥∥∥∂H

∂t

∥∥∥∥
2

−1
= 0
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and it follows from the Gronwall lemma that

E(u(t), H(t), ∂t H(t)) +
∫ t+1

t

{
‖∇μ(τ)‖2 +

∥∥∥∥∂H

∂t
(τ )

∥∥∥∥
2

+
∥∥∥∥∂H

∂t
(τ )

∥∥∥∥
2

−1

}
dτ

� E(u0, H0, H1), ∀t � 0. (4.17)

��
In the sequel, according to (4.17), the generic positive constant C may also depend on the

initial energy E(u0). In particular, we will use

E(u(t), H(t), ∂t H(t)) +
∫ t+1

t

{
‖∇μ(τ)‖2 +

∥∥∥∥∂H

∂t
(τ )

∥∥∥∥
2

+
∥∥∥∥∂H

∂t
(τ )

∥∥∥∥
2

−1

}
dτ � C, ∀t � 0.

(4.18)

Theorem 4.2 Let the assumptions of Theorem 4.1 holds. Then, there exists a positive constant
C such that

‖μ‖L∞(1,t;V ) � C, ∀t � 1 (4.19)

and
‖ut‖L∞(1,t;V ′) + ‖ut‖L2(t,t+1;V ) � C, ∀t � 1. (4.20)

Proof Testing (4.5) by μt , we have

1

2

d

dt
‖∇μ‖2 + ((ut , μt )) = 0. (4.21)

We observe that

((ut , μt )) � 1

2
‖ut‖2 + 1

2
‖∇ut‖2 − C‖ut‖2V ′ − C ′. (4.22)

Setting

�(t) = 1

2
‖∇μ(t)‖2,

we end up with the differential inequality

d

dt
� + 1

2
‖ut‖2H1(�)

� C‖ut‖2V ′ + C ′. (4.23)

Therefore, the uniform Gronwall lemma leads to

�(t) � C, ∀t � 1.

In particular, we have the bound

‖μ‖L∞(1,t;V ) � C, ∀t � 1,

which, in turns, gives

‖ut‖L∞(1,t;V ′) � C, ∀t � 1.
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The desired conclusion, (4.20) follows from an integration in time of (4.23) on the time interval
(t, t + 1), t � 1, combined with the previous inequality. ��
Remark 4.1 The proof of Theorem 4.2 is formal, but it can be justified within a Galerkin scheme
as in the proof of Theorem3.1.More precisely, all the computations can be regorously performed
within the Galerkin scheme. Given that F ′′ is controlled from below, the estimated turn out to
be independent of the approximation parameter and a final passage to the limit gives the result.

5 The Strict Separation Property in Two Dimensions

The main result of the paper reads as follows.

Theorem 5.1 Let n = 2 and the assumptions of Theorem 4.1 hold. In addition, we require that
S satisfies

|S′′(x)| � eC|S′(x)|+C , ∀x ∈ (−1, 1), (5.1)

for some positive C and S′′ is convex. Then, there exists δ > 0 such that

‖u(t)‖L∞(�) � 1 − δ, ∀t � 2. (5.2)

The proof is based on some technical lemmas and on additional assumptions on the singular
part of F which are fulfilled, for instance, by the logarithmic free energy (1.20).

Lemma 5.1 Let the assumptions of Theorem 5.1 hold. Then, for any p � 1, there exists a
positive constant C depending on p such that

‖S′′(u)‖L p(t,t+1;L p(�)) � C, ∀t � 1. (5.3)

Proof Equation (1.16) can be written in the equivalent form

− �u + S′(u) = μ̃, (5.4)

where

μ̃ = −(−�)−1 ∂u

∂t
+ H − u + θ0u. (5.5)

For any L > 0, we consider

g = S′(u)eL|S′(u)|.

We observe that

∇g = S′′(u)
[
1 + L|S′(u)|] eL|S′(u)|∇u.

Then, we consider Eq. (5.4) and test it with g. This yields

∫
�

∇u · ∇uS′′(u)
[
1 + L|S′(u)|] eL|S′(u)| dx +

∫
�
S′(u)S′(u)eL|S′(u)| dx

=
∫
�

μ̃S′(u)eL|S′(u)| dx .

123



Applied Mathematics & Optimization

Using the convexity of S′′ with a generalized Young’s inequality [1] and applying (4.3), we
obtain that ∫

�
S′(u)2eL|S′(u)| dx � C, (5.6)

where C depends on L . On account of (5.1), we observe that, for any p � 1,

|S′′(x)|p � epC (C + |S′(x)|2epC|S′(x)|), ∀x ∈ (−1, 1). (5.7)

Combining finally (5.1) with (5.6) and (5.7), taking L = pC , we deduce that

‖S′′(u)‖L p(t,t+1;L p(�)) � C(p), ∀t � 1.

��

Lemma 5.2 Let the assumptions of Lemma 5.1 hold. Then, there exists a positive constant C
such that

‖ut‖L∞(2,t;L2(�)) + ‖ut‖L2(t,t+1;H2(�)) � C, ∀t � 2. (5.8)

Proof Differentiate equation (4.5) with respect to time, we obtain

∂

∂t
ut = �μt . (5.9)

Multiplying (5.9) by ut , we find

1

2

d

dt
‖ut‖2+‖∇ut‖2+‖�ut‖2 = θ0‖∇ut‖2−((Ht , �ut ))+

∫
�

d

dt
(S′(u))·�ut dx . (5.10)

We observe that,

|((Ht , �ut ))| � ‖Ht‖‖�ut‖ � 1

4
‖�ut‖2 + C

and

∫
�

d

dt
(S′(u))�ut dx =

∫
�
S′′(u)ut�ut dx � 1

2
‖∇ut‖2

+1

4
‖�ut‖2 + c‖S′′(u)‖4L4(�)

‖ut‖2.

Therefore, Eq. (5.10) becomes

1

2

d

dt
‖ut‖2 + 1

2
‖∇ut‖2 + 1

2
‖�ut‖2 � c‖S′′(u)‖4L4(�)

‖ut‖2 + θ0‖∇ut‖2 + c, (5.11)

where c depends on p. Furthermore, by interpolation

θ0‖∇ut‖H1(�) � 1

4
‖�ut‖2 + c‖ut‖2, c > 0.
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Therefore, it follows

1

2

d

dt
‖ut‖2 + 1

2
‖∇ut‖2 + 1

4
‖�ut‖2 � c(1 + ‖S′′(u)‖4L4(�)

)‖ut‖2 + c. (5.12)

Using (5.3) and the uniform Gronwall lemma on (5.12), we obtain the desired result. ��
We now have all the ingredients to show the strict separation property.

Proof of Theorem 5.1 We consider the elliptic equation (5.4). Due to Lemma 5.2 and the elliptic
regularity, μ̃ satisfies

‖μ̃‖L∞(�×(2,t)) � C, ∀t � 2.

Testing (5.4) by |S′(u)|p−2S′(u), we get

(p − 1)
∫
�

|S′(u)|p−2S′′(u)|∇u|2 dx + ‖S′(u)‖pL p(�)
=

∫
�

μ̃|S′(u)|p−2S′(u) dx .

Noting that the first term is non-negative, integrating in time from t to t + 1 and an application
of the Holder inequality, we have for all t � 2

‖S′(u)‖L p(�×(t,t+1)) � ‖μ̃‖L p(�×(t,t+1)) � C‖μ̃‖L∞(�×(t,t+1)) � C,

where C is independent of p and t . Applying Theorem 2.14 in [1], we obtain

‖S′(u)‖L∞(�×(t,t+1)) � C, ∀t � 2.

This implies that there exists δ > 0 such that

‖u‖L∞(�×(t,t+1)) � 1 − δ, ∀t � 2.

Since u belongs to L∞(0, t; L∞(�)) for all t � 0, we also infer that

‖u‖L∞(2,t;L∞(�)) � 1 − δ, ∀t � 2.

Finally, we deduce (5.2) from the continuity in time. ��

6 Discretization of the Conserved Caginalp Phase-Field System

We note that the system (1.16)-(1.17) is equivalent to the following system :

∂u

∂t
− �μ = 0,

−ε�u + u + 1

ε
f (u) − H = μ,

(Id − �)

(
τ

∂2H

∂t2
+ ∂H

∂t

)
− �H = −�u,

u|t=0 = fu(x, y, 0), H |t=0 = fH (x, y, 0),
∂H

∂t
|t=0 = gH (x, y, 0),

(6.1)
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where, in this section, we present the spatial discretization of (6.1) using finite element method
with P1 continuous piecewise linear functions and a first-order semi-implicit scheme for the
time marching scheme.

6.1 Spatial Discretization

We let� be a convex, planar domain and Th be a regular, quasi uniform triangulation of�with
triangles of maximum size h < 1. Setting Vh = {vh ∈ C0(�̄); vh |Th ∈ P1(Th), ∀T ∈ Th} a
finite-dimensional subspace of H1(�) where P1 is the set of all polynomials of degrees ≤ 1
with real coefficients and we consider the weak formulation of (6.1):
Find uh , μh , Hh ∈ Vh such that, ∀φh ∈ Vh ,

((
∂uh
∂t

− �μh , φh

))
= 0,((

− ε�uh + uh + 1

ε
f (uh) − Hh , φh

))
) =

((
μh , φh

))
,

((
(Id − �)

(
τ

∂2Hh

∂t2
+ ∂Hh

∂t

)
− �Hh , φh

))
= −

((
�uh , φh

))
,

uh |t=0 = fuh(x,y,0), Hh |t=0 = fHh(x,y,0),
∂Hh

∂t
|t=0 = gHh(x,y,0).

(6.2)

6.2 TimeMarching Scheme

We discretize system (6.2) in time using a first-order semi-implicit scheme. To this end, let us
denote by (un+1

h , μn+1
h , Hn+1

h ) and (unh, μ
n
h , Hn

h ) the approximate value at time t = tn+1 and
t = tn , respectively, and by δt the time step. Then, owing to (6.2), the unknown fields at time
t = tn+1 are defined as the solution of:

((
un+1
h − δt · �μn+1

h ; φh

))
=

((
unh;φh

))
;

((
(μn+1

h − (I d − ε�)un+1
h + Hn+1

h ; φh

))
=

((
1

ε
· f (unh);φh

))
,

(( (
(τ + δt) (Id − �) − δt2 · �

)
Hn+1
h + δt2�un+1

h ;φh

))

=
((

(2τ + δt) · (Id − �) Hn
h − τ (Id − �) Hn−1

h ;φh

))
,

unh |t=0 = fuh(x,y,0), Hn−1
h |t=0 = fHh(x,y,0), Hn

h |t=0 = Hn−1
h |t=0 + δt · gHh(x,y,0),

in which (6.3) can be written equivalently in the following matrix form (AX = B):

⎛
⎝ Id −δt�(·) 0

−(Id − ε�)(·) Id Id
δt2�(·) 0

(
(τ + δt) (Id − �) − δt2 · �

)
(·)

⎞
⎠

⎛
⎝ un+1

h
μn+1
h

Hn+1
h

⎞
⎠ =

⎛
⎝ F(unh)

G(unh)
H(Hn

h , Hn−1
h ),

⎞
⎠ (6.3)

where

123



Applied Mathematics & Optimization

F(unh) = unh

G(unh) = 1

ε
· f (unh);

H(Hn
h , Hn−1

h ) = (2τ + δt) · (Id − �) Hn
h − τ (Id − �) Hn−1

h .

(6.4)

7 Numerical Simulations

We perform several numerical simulations using the FreeFem++ software [23], comparing the
conservedCaginalp phase-field system (6.3)–(6.4)with the cubic nonlinear term f (s) = s3−.8s

and the logarithmic one f (s) = −2κ0s + κ1 ln

(
1 + s

1 − s

)
when (κ0, κ1) = (ln(3), 0.8). We

compute the propagation in a square [0, 1] × [0, 1] of an initial random function for u between
[−1, 1] and a constant enthalpy H = .1 and we take fH (x, y, 0) = .1, gH (x, y, 0) = 0 and a
periodic boundary condition for u and H .

We will consider three cases for the space discretization, δx ∈
{

1

32
,
1

64
,

1

128

}
, and we take

ε = δx and δt = ε3.
In order to compare the conservedCaginalpmodel for both potentials,weplot in the following

Figs. 2, 3, 4, 5, 6 and 7 the solutions u, H in 2D, a cut of the solutions for x = .5 or y = .5, the
minima and maxima of u and H during the simulation, their corresponding mass conservation
and energy with different values of δx . We also use the parallelization mpi of our script using
Petsc [26] in order to converge rapidly to the final solution; thus, for δx = 1/32, we use 3
processors, for δx = 1/64, we use 8 processors and, for δx = 1/128, we use 11 processors.

As far as the Cahn–Hilliard equation is concerned, it is known that its solution converges to
one steady state solution which is either a straight line between −1 and 1 or a circle between
−1 and 1.

Interestingly, in our case, we instead observe a time periodic solution for u, due to the
influence of the enthalpy H . More precisely, when the solution u first converges to its steady
state solution, either circle or straight line, u and H then start to propagate in the same direction,
either from right to left as in the case of Fig. 3, downward as in the case of Fig. 7, right to left
as in the case of Fig. 2, left to right as in the case of Fig. 6 or, when we have a circular steady
state, from top left to lower right as in Fig. 5 and from lower right to top left as in Fig. 4.

We can see that we indeed have the mass conservation for u in all cases and the energy
decays until the solution converges to the steady state and then starts to oscillate due to the time
periodic solution.

We can see that the solution u converges to −.9 and .9 for the polynomial potential and
converges to −0.8 and 0.8 for the logarithmic potential; the enthalpy H has a similar behavior
for both potentials, whereas, concerning the energy, we do not obtain same values, due to the
fact that the maximum of the double-well potential differs between the logarithmic potential
1.1 and the polynomial one .1.
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