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Abstract. Our aim in this article is to study generalizations of the noncon-
served Caginalp phase-field system based on the Maxwell-Cattaneo law with

two temperatures for heat conduction and with logarithmic nonlinear terms.
We obtain well-posedness results and study the asymptotic behavior of the

system. In particular, we prove the existence of the global attractor. Fur-
thermore, we give some numerical simulations, obtained with the FreeFem++

software [24], comparing the nonconserved Caginalp phase-field model with
regular and logarithmic nonlinear terms.

1. Introduction. The nonconserved Caginalp phase field system

∂u

∂t
−∆u+ f(u) = T, (1)

∂T

∂t
−∆T = −∂u

∂t
, (2)
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has been proposed in [5] to model phase transition phenomena, such as melting-
solidification phenomena. Here, u is the order parameter, T is the relative temper-
ature (defined as T = T̃ − TE , where T̃ is the absolute temperature and TE is the
equilibrium melting temperature) and f is the derivative of a double-well potential

F (a typical choice is F (s) =
1

4
(s2 − 1)2, hence the usual cubic nonlinear term

f(s) = s3 − s). Furthermore, here and below, we set all physical parameters equal
to one. This system has been extensively studied; we refer the reader to, e.g., [1],
[2], [3], [4], [10], [11], [13], [17], [18], [19], [20], [21], [22], [27], [35] and [37].

These equations can be derived as follows. One introduces the (total Ginzburg-
Landau) free energy

Ψ =

∫
Ω

(
1

2
|∇u|2 + F (u)− uT − 1

2
T 2

)
dx, (3)

where Ω is the domain occupied by the system (we assume here that it is a bounded
and regular domain of Rn, n = 1, 2 or 3, with boundary Γ) and the enthalpy

H = u+ T. (4)

As far as the evolution equation for the order parameter is concerned, one postulates
the relaxation dynamics (with relaxation parameter set equal to one)

∂u

∂t
= − DΨ

Du
, (5)

where
D

Du
denotes a variational derivative with respect to u, which yields (1).

Then, we have the energy equation

∂H

∂t
= −div q, (6)

where q is the heat flux. Assuming finally the usual Fourier law for heat conduction,

q = −∇T, (7)

we obtain (2).
Now, one essential drawback of the Fourier law is that it predicts that thermal

signals propagate at an infinite speed, which violates causality (the so-called paradox
of heat conduction, see [14]). To overcome this drawback, or at least to account for
more realistic features, several alternatives to the Fourier law, based, for example,
on the Maxwell-Cattaneo law or recent laws from thermomechanics, have been
proposed and studied in, e.g., [25], [26], [28], [29], [30], [31] and [32].

In the late 1960’s, several authors proposed a heat conduction theory based on
two temperatures (see [7], [8] and [9]). More precisely, one now considers the conduc-
tive temperature T and the thermodynamic temperature θ. For time-independent
problems the difference between these temperatures is proportional to the heat sup-
ply; they thus coincide when there is no heat supply. However, for time-dependent
problems, they are generally different even in the absence of heat supply: this is in
particular the case for non-simple materials. In that case, the two temperatures are
related as follows:

θ = T −∆T. (8)

The nonconserved Caginalp system was studied in [15] for the classical Fourier
law with two temperatures and in [33] for the type III thermomechanics theory [23]
with two temperatures recently proposed in [37] (see also [16]).
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In this article, we consider the theory of two-temperature-generalized thermoe-
lasticity proposed in [39] and based on the Maxwell-Cattaneo law.

In that case, the free energy reads, in terms of the (relative) thermodynamic
temperature θ,

Ψ =

∫
Ω

(
1

2
|∇u|2 + F (u)− uθ − 1

2
θ2

)
dx (9)

and (5) yields, in view of (8), the following evolution equation for the order param-
eter:

∂u

∂t
−∆u+ f(u) = T −∆T. (10)

Furthermore, to obtain the corresponding generalized heat equation, one writes

∂H

∂t
= −div q, (11)

H = u+ θ = u+ T −∆T, (12)

where the heat flux q satisfies the Maxwell-Cattaneo law [39],

q + τ
∂q

∂t
= −∇T, τ > 0. (13)

In particular, it follows from (11) that

τ
∂2H

∂t2
+
∂H

∂t
= −div

(
q + τ

∂q

∂t

)
,

hence, in view of (13),

τ
∂2H

∂t2
+
∂H

∂t
= ∆T. (14)

We thus deduce from (12) and (14) the generalized heat equation

(I −∆)

(
τ
∂2T

∂t2
+
∂T

∂t

)
−∆T = −τ ∂

2u

∂t2
− ∂u

∂t
. (15)

Here, the presence of the second derivative ∂2u
∂t2 makes the mathematical analysis

of the equation particularly difficult and, to overcome such a difficulty, we will
rewrite the equation in a different way, keeping the enthalpy H as unknown. Indeed,
it follows from (12) and (14) that

(I −∆)

(
τ
∂2H

∂t2
+
∂H

∂t

)
= ∆(T −∆T ),

hence

(I −∆)

(
τ
∂2H

∂t2
+
∂H

∂t

)
−∆H = −∆u. (16)

Furthermore, owing again to (12), (10) can be written as

∂u

∂t
−∆u+ u+ f(u) = H. (17)

In [34], the authors studied the well-posedness of the nonconserved Caginalp
system (16)-(17), for regular nonlinear terms f and Dirichlet boundary conditions.
It is however important to note that, in phase transition, regular nonlinear terms
actually are approximations of thermodynamically relevant logarithmic ones of the
form

f(s) = −2κ0s+ κ1 ln

(
1 + s

1− s

)
, (18)
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with s ∈ (−1, 1) and 0 < κ1 < κ0, which follow from a mean-field model (see [6],
[27]; in particular, the logarithmic terms correspond to the entropy of mixing).

In order to compare the logarithmic potentials with the cubic ones in the numer-
ical simulations that we will perform, we will choose a cubic polynomial which has
the same extrema as the logarithmic potential. To this end, we will consider the
following cubic nonlinear terms:

f(s) =

{
.83(s3 − .52s), when (κ0, κ1) = (ln(3), 1), (19)

2.5(s3 − .93152s), when (κ0, κ1) = (ln(6), 1). (20)

The original Caginalp phase-field system, with the aforementioned logarithmic
nonlinear terms, was studied in [27]; see also [19] for a more general Caginalp phase-
field system, with a nonlinear coupling between u and T .

In this article, we consider the nonconserved phase-field model (16)-(17), with the
logarithmic nonlinear terms (18). The article is organized as follows. In Section 2,
we derive a priori estimates which are of fundamental significance for what follows.
In Section 3, we prove that the solutions are separated from the singular points of
f , which allows us to prove the existence of global (in time) solutions. In Section
4, we study the dissipativity of the associated dynamical system. In Section 5,
we prove the existence of the global attractor. In Section 6, we write the spatial
and time discretizations of (16)-(17), which allows us finally, in Section 7, to give a
comparison for the nonconserved Caginalp model with regular and the logarithmic
nonlinear terms, first, by comparing the convergence rate of our codes and then by
computing the propagation of a cross function for u and a constant enthalpy H.
In particular, we give an example for which both potentials are comparable (this is
expected when the quench is shallow, i.e., when κ1 is close to κ0) and a second one
for which the logarithmic potential gives much better results.

Notation. We denote by (( · , · )) the usual L2-scalar product, with associated
norm ‖ · ‖. More generally, ‖ · ‖X denotes the norm in the Banach space X.

Throughout the article, the same letter c, c′ (and, sometimes, c′′, C) denotes
(generally positive) constants which may vary from line to line. Similarly, the same
letter Q denotes (positive) monotone increasing (with respect to each argument)
functions which may vary from line to line.

Setting the problem. We consider the following initial and boundary value prob-
lem, in a bounded and regular domain Ω ⊂ Rn, n = 1, 2 or 3, with boundary Γ:

∂u

∂t
− ε∆u+ u+

1

ε
f(u) = H, (21)

(I −∆)

(
τ
∂2H

∂t2
+
∂H

∂t

)
−∆H = −∆u, (22)

u = H = 0 on Γ, (23)

u|t=0 = u0, H|t=0 = H0,
∂H

∂t
|t=0 = H1. (24)

For simplicity, we set τ and ε equal to one in what follows. The nonlinear term f
is defined as

f(s) = −2κ0s+ κ1 ln

(
1 + s

1− s

)
, (25)
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with s ∈]− 1, 1[ and 0 < κ1 < κ0. We then have

f ′(s) =
2κ1

1− s2
− 2κ0. (26)

Lemma 1.1. The nonlinear term f in (25) is of class C∞ and satisfies

− c0 6 F (s) 6 f(s)s+ c0, c0 > 0, (27)

where F (s) =

∫ s

0

f(τ) dτ , and

f(0) = 0, f ′(s) > −c1, c1 > 0. (28)

Proof. We have, for s ∈ (−1, 1),

F (s) =

∫ s

0

f(τ) dτ = −κ0s
2 + κ1[s ln(

1 + s

1− s
) + ln((1− s)(1 + s))]

= f(s)s+ κ0s
2 + κ1 ln((1− s)(1 + s)).

Note that, for s ∈ (−1, 1),

κ1 ln((1− s)(1 + s)) 6 0

and

κ1[s ln(
1 + s

1− s
) + ln((1− s)(1 + s))] > 0.

Therefore, we obtain

−c0 6 F (s) 6 f(s)s+ c0,

with c0 = κ0s
2 > 0. Finally, it easily follows from (26) that

f ′(s) > −c1,
with c1 = 2κ0 > 0.

Remark 1.1. We can also endow the problem with periodic or Neumann boundary
conditions. In these cases, we have, integrating (22) over Ω,

d

dt
(
d〈H〉
dt

+ 〈H〉) = 0, (29)

where 〈·〉 denotes the spatial average, which yields

d〈H〉
dt

+ 〈H〉 = 〈H0 +H1〉 (30)

and

〈H(t)〉 = 〈H0 +H1〉 − 〈H1〉e−t, t > 0. (31)

Taking (29)-(31) into account, we can adapt the proofs below and derive the same
well-posedness results. Note however that, in order to study the existence of attrac-
tors, we need to assume that

|〈H0 +H1〉| 6M1, |〈H1〉| 6M2. (32)

It thus follows from (31) that

|( d〈H〉
dt

+ 〈H〉)(t)| 6M1, |
d〈H〉
dt

(t)| 6M2, |〈H(t)〉| 6M1 +M2, ∀t > 0. (33)

We can then define the family of solving operators

S(t) : ΦM → ΦM , (u0, H0, H1) 7→ (u(t), H(t),
∂H

∂t
(t)), t ≥ 0,
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where

ΦM (= ΦM1,M2) = {(ϕ, θ, ξ) ∈ H2(Ω)3; ‖ϕ‖L∞(Ω) < 1, |〈θ+ξ〉| 6M1, |〈ξ〉| 6M2}.

This family of operators forms a semigroup which is continuous for the L2(Ω) ×
L2(Ω)× L2(Ω)-topology. We refer the interested reader to [33] for more details on
the necessary modifications.

2. A priori estimates.

Remark 2.1. We will make formal calculations here, keeping in mind that all
these calculations can be rigorously justified by approaching the singular function f
by regular functions of class C1. We will assume a priori that ‖u‖L∞((0,T )×Ω) < 1
and that ‖u0‖L∞ < 1.

We multiply (21) by
∂u

∂t
and have, integrating over Ω and by parts,

d

dt

(
‖u‖2H1(Ω) + 2

∫
Ω

F (u) dx

)
+ 2

∥∥∥∥∂u∂t
∥∥∥∥2

= 2

((
H,

∂u

∂t

))
, (34)

noting that ‖ · ‖2H1(Ω) = ‖ · ‖2 + ‖∇ · ‖2.

We then multiply (22) by (−∆)−1 ∂H

∂t
to obtain

d

dt

(
‖H‖2 +

∥∥∥∥∂H∂t
∥∥∥∥2

−1

+

∥∥∥∥∂H∂t
∥∥∥∥2)

+2

(∥∥∥∥∂H∂t
∥∥∥∥2

−1

+

∥∥∥∥∂H∂t
∥∥∥∥2)

= 2

((
u,
∂H

∂t

))
. (35)

Noting that ((
H,

∂u

∂t

))
=

d

dt
((u,H))−

((
u,
∂H

∂t

))
,

we finally find, summing (34) and (35),

d

dt

(
‖∇u‖2 + 2

∫
Ω

F (u) dx+ ‖u−H‖2 +

∥∥∥∥∂H∂t
∥∥∥∥2

−1

+

∥∥∥∥∂H∂t
∥∥∥∥2)

+ 2

(∥∥∥∥∂u∂t
∥∥∥∥2

+

∥∥∥∥∂H∂t
∥∥∥∥2

−1

+

∥∥∥∥∂H∂t
∥∥∥∥2)

= 0.

(36)

Next, we multiply (21) by u and have, owing to (27),

d

dt
‖u‖2 + 2‖u‖2H1(Ω) + c

∫
Ω

F (u) dx 6 2((H,u)) + c′. (37)

Multiplying then (22) by (−∆)−1H, we obtain

d

dt

(
‖H‖2−1 + ‖H‖2 + 2

((
∂H

∂t
,H

))
−1

+ 2

((
∂H

∂t
,H

)))
+ 2‖H‖2

= 2((H,u)) + 2

(∥∥∥∥∂H∂t
∥∥∥∥2

−1

+

∥∥∥∥∂H∂t
∥∥∥∥2)

.

(38)
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Summing (37) and (38), we find

d

dt

(
‖u‖2 + ‖H‖2−1 + ‖H‖2 + 2

((
∂H

∂t
,H

))
−1

+ 2

((
∂H

∂t
,H

)))
+ c

(
‖u−H‖2

+ ‖∇u‖2 + 2

∫
Ω

F (u) dx

)
6 2

(∥∥∥∥∂H∂t
∥∥∥∥2

−1

+

∥∥∥∥∂H∂t
∥∥∥∥2)

+ c′, c > 0.

(39)

Summing finally (36) and δ1 times (39), where δ1 > 0 is chosen small enough, we
have a differential inequality of the form

d

dt
E1 + c

(
E1 +

∥∥∥∥∂u∂t
∥∥∥∥2)

6 c′, c > 0, (40)

where

E1 = ‖∇u‖2 + 2

∫
Ω

F (u) dx+ ‖u−H‖2 +

∥∥∥∥∂H∂t
∥∥∥∥2

−1

+

∥∥∥∥∂H∂t
∥∥∥∥2

+ δ1

(
‖u‖2 + ‖H‖2−1 + ‖H‖2 + 2

((
∂H

∂t
,H

))
−1

+ 2

((
∂H

∂t
,H

))) (41)

satisfies

E1 > c

(
‖u‖2H1(Ω) +

∫
Ω

F (u) dx+ ‖H‖2 +

∥∥∥∥∂H∂t
∥∥∥∥2)
− c′, c > 0. (42)

We now multiply (22) by
∂H

∂t
to obtain

d

dt

(
‖∇H‖2 +

∥∥∥∥∂H∂t
∥∥∥∥2

H1(Ω)

)
+

∥∥∥∥∂H∂t
∥∥∥∥2

H1(Ω)

6 ‖∇u‖2. (43)

Multiplying also (22) by H, we find

d

dt

(
‖H‖2H1(Ω) + 2

((
∂H

∂t
,H

))
+ 2

((
∇∂H
∂t

,∇H
)))

+ ‖∇H‖2

6 ‖∇u‖2 + 2

∥∥∥∥∂H∂t
∥∥∥∥2

H1(Ω)

.

(44)

Summing (40), δ2 times (43) and δ3 times (44), where δ2, δ3 > 0 are chosen small
enough, we have a differential inequatity of the form

d

dt
E2 + c

(
E2 +

∥∥∥∥∂u∂t
∥∥∥∥2)

6 c′, c > 0, (45)

where

E2 = E1+δ2

(
‖∇H‖2 +

∥∥∥∥∂H∂t
∥∥∥∥2

H1(Ω)

)
+ δ3

(
‖H‖2H1(Ω) + 2

((
∂H

∂t
,H

))
+ 2

((
∇∂H
∂t

,∇H
))) (46)

satisfies

E2 > c

(
‖u‖2H1(Ω) +

∫
Ω

F (u) dx+ ‖H‖2H1(Ω) +

∥∥∥∥∂H∂t
∥∥∥∥2

H1(Ω)

)
− c′, c > 0. (47)
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Gronwall’s lemma implies that

u,H,
∂H

∂t
∈ L∞(0, T,H1(Ω)) and

∂u

∂t
∈ L2(0, T, L2(Ω)).

We finally multiply (21) by −∆u and obtain, owing to (28) and classical elliptic
regularity results,

d

dt
‖∇u‖2 + c‖u‖2H2(Ω) 6 c′(‖∇u‖2 + ‖H‖2), c > 0. (48)

Summing (45) and δ4 times (48), where δ4 > 0 is chosen small enough, we find a
differential inequality of the form

dE3

dt
+ c

(
E3 + ‖u‖2H2(Ω) +

∥∥∥∥∂u∂t
∥∥∥∥2)

6 c′, c > 0, (49)

where

E3 = E2 + δ4‖∇u‖2 (50)

satisfies

E3 > c

(
‖u‖2H1(Ω) +

∫
Ω

F (u) dx+ ‖H‖2H1(Ω) +

∥∥∥∥∂H∂t
∥∥∥∥2

H1(Ω)

)
− c′, c > 0. (51)

Thus, it follows that u ∈ L∞(0, T,H1(Ω)) ∩ L2(0, T,H2(Ω)).
In a second step, we differentiate (21) with respect to time to have the initial

and boundary value problem

∂

∂t

∂u

∂t
−∆

∂u

∂t
+
∂u

∂t
+ f ′(u)

∂u

∂t
=
∂H

∂t
, (52)

∂u

∂t
= 0 on Γ, (53)

∂u

∂t
(0) = ∆u0 − u0 − f(u0) +H0. (54)

Note that, if u0 ∈ H2(Ω) ∩H1
0 (Ω) and H0 ∈ L2(Ω), then

∂u

∂t
(0) ∈ L2(Ω) and∥∥∥∥∂u∂t (0)

∥∥∥∥ 6 Q(‖u0‖H2(Ω), ‖H0‖). (55)

Indeed, it follows from the continuity of f and the continuous embedding H2(Ω) ⊂
C(Ω̄) that ‖f(u0)‖ 6 Q(‖u0‖H2(Ω)).

Multiplying (52) by
∂u

∂t
, we obtain, in view of (28),

d

dt

∥∥∥∥∂u∂t
∥∥∥∥2

+ c

∥∥∥∥∂u∂t
∥∥∥∥2

H1(Ω)

6 c′
(∥∥∥∥∂u∂t

∥∥∥∥2

+

∥∥∥∥∂H∂t
∥∥∥∥2)

, c > 0. (56)

Summing then (49) and δ5 times (56), where δ5 > 0 is chosen small enough, we find
a differential inequality of the form

dE4

dt
+ c

(
E4 + ‖u‖2H2(Ω) +

∥∥∥∥∂u∂t
∥∥∥∥2

H1(Ω)

)
6 c′, c > 0, (57)

where

E4 = E3 + δ5

∥∥∥∥∂u∂t
∥∥∥∥2

(58)
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satisfies

E4 > c

(
‖u‖2H1(Ω)+

∫
Ω

F (u) dx+

∥∥∥∥∂u∂t
∥∥∥∥2

+‖H‖2H1(Ω)+

∥∥∥∥∂H∂t
∥∥∥∥2

H1(Ω)

)
−c′, c > 0, (59)

which gives
∂u

∂t
∈ L∞(0, T, L2(Ω)) ∩ L2(0, T,H1(Ω)).

We finally rewrite (21) as an elliptic equation, for t > 0 fixed,

−∆u+ u+ f(u) = −∂u
∂t

+H, u = 0 on Γ. (60)

Multiplying (60) by −∆u, we have, owing to (28),

‖∆u‖2 6 c

(
‖∇u‖2 +

∥∥∥∥∂u∂t
∥∥∥∥2

+ ‖H‖2
)
,

hence, owing to classical regularity results,

‖u(t)‖2H2(Ω) 6 cE4(t) + c′, t > 0, (61)

so that u ∈ L∞(0, T,H2(Ω)).

Having this, we multiply (22) by −∆
∂H

∂t
and −∆H to obtain

d

dt

(
‖∆H‖2 +

∥∥∥∥∇∂H∂t
∥∥∥∥2

+

∥∥∥∥∆
∂H

∂t

∥∥∥∥2)
+

∥∥∥∥∇∂H∂t
∥∥∥∥2

+

∥∥∥∥∆
∂H

∂t

∥∥∥∥2

6 ‖∆u‖2 (62)

and

d

dt

(
‖∇H‖2 + ‖∆H‖2 + 2

((
∇∂H
∂t

,∇H
))

+ 2

((
∆
∂H

∂t
,∆H

)))
+ ‖∆H‖2

6 ‖∆u‖2 + 2

(∥∥∥∥∇∂H∂t
∥∥∥∥2

+

∥∥∥∥∆
∂H

∂t

∥∥∥∥2)
,

(63)

respectively. Summing (62) and δ6 times (63), where δ6 > 0 is chosen small enough,
we find, in view of (61), a differential inequality of the form

dE5

dt
+ cE5 6 c′E4 + c′′, c > 0, (64)

where

E5 = ‖∆H‖2 +

∥∥∥∥∇∂H∂t
∥∥∥∥2

+

∥∥∥∥∆
∂H

∂t

∥∥∥∥2

+ δ6

(
‖∇H‖2 + ‖∆H‖2 + s

((
∇∂H
∂t

,∇H
))

+ 2

((
∆
∂H

∂t
,∆H

))) (65)

satisfies

E5 > c

(
‖H‖2H2(Ω) +

∥∥∥∥∂H∂t
∥∥∥∥2

H2(Ω)

)
, c > 0. (66)

Gronwall’s lemma then yields that H,
∂H

∂t
∈ L∞(0, T,H2(Ω)).

In particular, it follows from (57) and Gronwall’s lemma that

E4(t) 6 e−ctE4(0) + c′, c > 0, t > 0, (67)
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which yields, owing to (59), the continuity of f and the continuous embedding
H2(Ω) ⊂ C(Ω̄),

‖u(t)‖2H1(Ω) +

∥∥∥∥∂u∂t (t)

∥∥∥∥2

+ ‖H(t)‖2H1(Ω) +

∥∥∥∥∂H∂t
∥∥∥∥2

H1(Ω)

6 e−ctQ(‖u0‖2H2(Ω), ‖H0‖2H1(Ω), ‖H1‖2H1(Ω)) + c′, c > 0, t > 0.

(68)

It then follows from (61), (67) and (68) that

‖u(t)‖2H2(Ω) 6 e−ctQ(‖u0‖2H2(Ω), ‖H0‖2H1(Ω), ‖H1‖2H1(Ω)) + c′, c > 0, t > 0, (69)

and from (64), (66)-(68) and Gronwall’s lemma that

‖H(t)‖2H2(Ω) +

∥∥∥∥∂H∂t
∥∥∥∥2

H2(Ω)

6 e−ctQ(‖u0‖2H2(Ω), ‖H0‖2H2(Ω), ‖H1‖2H2(Ω)) + c′, c > 0, t > 0.

(70)

3. Existence and uniqueness of solutions. One of the difficulties here is pre-
cisely to ensure that the order parameter u remains in the physical interval (−1,+1),
in order to give a meaning to the equations. We should note that the values −1 and
+1 correspond to the pure phases. To prove the well-posedness of our problem, it
suffices to obtain an estimate of H in L∞((0, T )× Ω) (see [27]). We start with the
following result.

Lemma 3.1. Assume that u0 ∈ H2(Ω) ∩H1
0 (Ω) and that ‖u0‖L∞ < 1. Then, the

order parameter u satisfies the strict separation property

‖u(t)‖L∞ 6 δ, t ∈ [0, T ], ∀T > 0,

for some δ ∈ (0, 1) depending on T .

Proof. It follows from the previous section that H ∈ L∞(0, T,H2(Ω)) and, since
H2(Ω) ↪→ L∞(Ω), we see that H ∈ L∞((0, T )× Ω).

We set v = u− δ, where δ ∈ (0, 1). We have

∂v

∂t
−∆v + v + f(u)− f(δ) = H − f(δ)− δ. (71)

Set now v+ = max{0, v}. Multiplying (71) by v+, we find, integrating over Ω,

1

2

d

dt
‖v+‖2 + ‖v+‖2H1(Ω) +

∫
Ω

(f(u)− f(δ))v+ dx = ((H − f(δ)− δ, v+)). (72)

We note that, by definition, v+ = 0 on Γ, since v = 0 on Γ. Then, thanks to (28),∫
Ω

(f(u)− f(δ))v+ dx > −c1‖v+‖2, (73)

whence
1

2

d

dt
‖v+‖2 + ‖v+‖2H1(Ω) 6 c1‖v+‖2 + ((H − f(δ)− δ, v+)). (74)

By choosing δ such that

f(δ) + δ > ‖H‖L∞ and ‖u0‖L∞ ≤ δ, (75)

we then deduce that

d

dt
‖v+‖2 + ‖v+‖2H1(Ω) 6 2c1‖v+‖2. (76)
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In particular,

d

dt
‖v+‖2 6 2c1‖v+‖2. (77)

Gronwall’s lemma then yields, noting that v+(0) = 0,

‖v+(t)‖2 6 0. (78)

This means that

v+(t) = 0, ∀t > 0, (79)

and, as v 6 v+, then

v(t, x) 6 0, ∀t > 0, a.e. x ∈ Ω (t ∈ [0, T ]).

Therefore,

u(t, x) 6 δ, ∀t > 0, a.e. x ∈ Ω. (80)

As f is an odd function, we set v = u − λ, with λ = −δ. We define the quantity
v− = min{0, v}. Proceeding as above, replacing δ by λ, we obtain

‖v−(t)‖2 6 0, since v−(0) = 0. (81)

Consequently,

v−(t) = 0, ∀t > 0.

Since v > v−, there holds

v(t, x) > 0,∀t > 0 a.e. x ∈ Ω,

This means that

u(t, x) > λ,

which is equivalent to

u(t, x) > −δ, ∀t > 0 a.e. x ∈ Ω. (82)

Finally,

‖u‖L∞((0,T )×Ω) 6 δ < 1. (83)

Therefore, the order parameter u is strictly separated from the singular points of
f .

Theorem 3.1. Let (u0, H0, H1) ∈ (H2(Ω) ∩H1
0 (Ω))3 be such that ‖u0‖L∞(Ω) < 1.

Then the problem (21)-(24) admits a unique solution

(
u,H,

∂H

∂t

)
such that(

u,H,
∂H

∂t

)
∈ L∞(R+;H2(Ω) ∩H1

0 (Ω))3

and
∂u

∂t
∈ L∞(R+;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)).

Furtheremore, there exists a constant δ = δ(T, u0) ∈ (0, 1) such that

‖u(t)‖L∞(Ω) 6 δ, ∀t ∈ [0, T ],∀T > 0.
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Proof. a) Existence: We first regularize the function f by a C1 function fδ defined
by

fδ(s) =

 f(−δ) + f ′(−δ)(s+ δ), if s ∈ (−∞,−δ],
f(s), if s ∈ [−δ, δ],
f(δ) + f ′(δ)(s− δ), if s ∈ [δ,+∞),

where δ is the constant defined above. We can choose δ sufficiently close to 1 so
that

f(δ) > 0 and f ′(δ) > 0,

taking δ small enough if necessary.
We then consider the problem (21)-(24) with f replaced by fδ and u replaced by

uδ, that is,

(Pδ) :



∂uδ

∂t
−∆uδ + uδ + fδ(u

δ) = H,

(I −∆)

(
∂2H

∂t2
+
∂H

∂t

)
−∆H = −∆uδ,

uδ = H = 0, on Γ,

uδ|t=0 = uδ0, H|t=0 = H0,
∂H

∂t
|t=0 = H1.

It is known that problem (Pδ) admits a unique solution (see [11]). We further have

Lemma 3.2. We assume that

Fδ =

∫ s

0

fδ(τ) dτ.

The functions fδ and Fδ satisfy the following properties:

f ′δ(s) > −c1 and − c0 6 Fδ(s) ∀s ∈ R,

where c0 and c1 are the positive constants in (27) and (28) (taking δ smaller if
necessary).

Proof. We consider, e.g., the case where s ∈]δ,+∞) and we have

fδ(s) = f ′(δ)(s− δ) + f(δ).

It is clear that

f ′δ(s) = f ′(δ) > −c1, ∀s ∈]δ,+∞).

Furthermore,

Fδ(s) =

∫ s

0

fδ(τ) dτ

=

∫ δ

0

fδ(τ) dτ +

∫ s

δ

fδ(τ) dτ

=

∫ δ

0

f(τ) dτ +

∫ s

δ

fδ(τ) dτ

= F (τ) +

∫ s

δ

fδ(τ) dτ

> −c0 (since

∫ s

δ

fδ(τ) dτ > 0).
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As a consequence of Lemma 3.2, the a priori estimates established in Section
2 for the solutions to problem (21)-(24) still hold for the solutions to (Pδ). In
particular, we deduce from Lemma 3.1 that

‖uδ‖L∞(Ω) 6 δ, ∀t > 0.

Hence we have fδ(u
δ) = f(uδ) and we conclude that (uδ, Hδ,

∂Hδ

∂t
) is also a solution

to (21)-(24).

b) Uniqueness: Let

(
u(1), H(1),

∂H(1)

∂t

)
and

(
u(2), H(2),

∂H(2)

∂t

)
be two so-

lutions to (21)-(24) with initial data

(
u

(1)
0 , H

(1)
0 , H

(1)
1

)
and

(
u

(2)
0 , H

(2)
0 , H

(2)
1

)
, re-

spectively. We set(
u,H,

∂H

∂t

)
=

(
u(1), H(1),

∂H(1)

∂t

)
−
(
u(2), H(2),

∂H(2)

∂t

)
and (

u0, H0, H1

)
=

(
u

(1)
0 , H

(1)
0 , H

(1)
1

)
−
(
u

(2)
0 , H

(2)
0 , H

(2)
1

)
and have

∂u

∂t
−∆u+ u+ f

(
u(1)

)
− f

(
u(2)

)
= H, (84)

(I −∆)

(
∂2H

∂t2
+
∂H

∂t

)
−∆H = −∆u, (85)

u = H = 0 on Γ, (86)

u|t=0 = u0, H|t=0 = H0,
∂H

∂t
|t=0 = H1. (87)

Multiplying (84) by u, we obtain, in view of (28),

d

dt
‖u‖2 + ‖u‖2H1(Ω) 6 c(‖u‖2 + ‖H‖2). (88)

Multiplying then (85) by (−∆)−1 ∂H

∂t
, we find

d

dt

(
‖H‖2 +

∥∥∥∥∂H∂t
∥∥∥∥2

−1

+

∥∥∥∥∂H∂t
∥∥∥∥2)

+

∥∥∥∥∂H∂t
∥∥∥∥2

−1

+

∥∥∥∥∂H∂t
∥∥∥∥2

6 ‖u‖2. (89)

Summing finally (88) and (89), we have a differential inequality of the form

dE6

dt
6 cE6, (90)

where

E6 = ‖u‖2 + ‖H‖2 +

∥∥∥∥∂H∂t
∥∥∥∥2

−1

+

∥∥∥∥∂H∂t
∥∥∥∥2

(91)

satisfies

E6 > c

(
‖u‖2 + ‖H‖2 +

∥∥∥∥∂H∂t
∥∥∥∥2)

, c > 0. (92)

It thus follows from (90)-(92) and Gronwall’s lemma that

‖u(t)‖2 + ‖H(t)‖2 +

∥∥∥∥∂H∂t (t)

∥∥∥∥2

6 cec
′t(‖u0‖2 + ‖H0‖2 + ‖H1‖2), t > 0, (93)
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hence the uniqueness, as well as the continuous dependence with respect to the
initial data in the L2 × L2 × L2-topology.

It follows from Theorem 3.1 that we can define the family of solving operators

S(t) : Φ→ Φ, (u0, H0, H1) 7→
(
u(t), H(t),

∂H

∂t
(t)

)
, t > 0,

where

Φ = {(u,H, ∂H
∂t

) ∈ (H2(Ω) ∩H1
0 (Ω))3; ‖u‖L∞ < 1}.

Furthermore, this family of solving operators forms a semigroup, that is, S(0) = I
and S(t + τ) = S(t) ◦ S(τ), ∀t, τ > 0, which is continuous with respect to the
L2-topology.

4. Dissipativity. In this section, we study the dissipativity of our system. More-
over, one difficulty is that δ depends on the initial data and time T ; note that the
constant δ that appears in the strict separation property satisfied by the order pa-
rameter u is such that ‖u0‖L∞(Ω) 6 δ < 1. Our aim is therefore to have an estimate
that does not depend on the initial data nor on the time, at least for large times.
To do this, we proceed as in [27]; see also, e.g., [11], [12] and [19].

Let R0 > 0 be given and assume that

1

1− ‖u0‖L∞(Ω)
+ ‖u0‖2H2(Ω) + ‖H0‖2H2(Ω) + ‖H1‖2H2(Ω) 6 R2

0.

We then have, owing to Theorem 3.1 and (69)-(70), the existence of t0 = t0(R0) > 0
such that

‖H(t)‖L∞(Ω) 6 C, ∀t > t0, (94)

where C is independent of R0. Furthermore, there holds

‖H(t)‖L∞(Ω) 6 δ̃, ∀t > 0, (95)

where δ̃ = δ̃(R0). Here, we can assume without loss of generality that C 6 δ̃.
We now choose β ∈ (0, 1) independent of R0 and t1 > t0 such that

f(β) > C + 1 (96)

and γ(= γ(R0)) =
1− β
t1

small enough so that

γ 6 1, f(1− γt0) > δ̃ + 1. (97)

We finally set

y+(t) =

{
1− γt, if 0 6 t 6 t1,
β, if t > t1.

We have

β 6 y+(t) < 1, ∀t > 0, y+(0) = 1. (98)

Finally, we define the variable θ by

θ = u− y+. (99)

We then have

∂θ

∂t
−∆θ+θ+f(u)−f(y+) = G := H−f(y+)−y′+(t)−y+(t), t > 0, t 6= t1, (100)
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where y′+ is the derivative of y+. Furthermore, there holds, owing to (96),

G(t) 6

{
δ̃ + 1− f(1− γt0), 0 < t 6 t0,
C + 1− f(β), t > t0, t 6= t1,

hence, in view of (96) and (97),

G(t) 6 0, ∀t > 0, t 6= t1. (101)

Setting
θ+ = max{θ, 0}, (102)

we have, multipying (100) by θ+ and integrating over Ω and by parts, in view of
(101),

d

dt
‖θ+‖2 + ‖θ+‖2H1(Ω) 6 c‖θ+‖2, t > 0, t 6= t1. (103)

Using Gronwall’s lemma and noting that θ+ is continuous with respect to time and
that θ+(0) = 0, we then deduce that

θ+(t) = 0, ∀t > 0. (104)

Therefore,
u(t) 6 y+(t), ∀t > 0, (105)

and
u(t) 6 β, ∀t > t1. (106)

Proceeding in a similar way to derive a lower bound, we finally deduce that there
exists β ∈ (0, 1) independent of R0 such that

‖u(t)‖L∞(Ω) 6 β, ∀t > t1, t1 = t1(R0), (107)

hence a dissipative L∞-estimate on u.
The dynamical system (S(t),Φ) is thus dissipative (i.e., it possesses a bounded

absorbing set B0, that is, ∀B ∈ Φ bounded, ∃t0 = t0(B) such that t > t0 implies
S(t)B ⊂ B0; it is understood here that B bounded means that ∃R > 0 such that

1

1− ‖u‖L∞(Ω)
+ ‖u‖2H2(Ω) + ‖H‖2H2(Ω) + ‖∂H

∂t
‖2H2(Ω) 6 R2, ∀(u,H, ∂H

∂t
) ∈ B).

Theorem 4.1. The semigroup S(t), t > 0, associated to our system is dissipative
on Φ, i.e., it possesses a bounded absorbing set B0 in Φ.

5. Existence of the global attractor.

Theorem 5.1. Under the hypotheses of Theorem 4.1, the semigroup S(t), t > 0,
defined from B0 into itself possesses the connected global attractor denoted by A.

Proof. According to the previous section, it is known that the semigroup possesses
a bounded absorbing set B0 in Φ. To prove the existence of the global attractor A,
it suffices to prove that the semigroup is asymptotically compact in the sense of the
Kuratowski measure of noncompactness.

We consider the following decomposition:(
u,H,

∂H

∂t

)
=

(
v, a,

∂a

∂t

)
+

(
w, b,

∂b

∂t

)
,

where (v, a,
∂a

∂t
) is solution of

∂v

∂t
−∆v + v = a, (108)
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(I −∆)

(
∂2a

∂t2
+
∂a

∂t

)
−∆a = −∆v, (109)

v = a = 0, on Γ, (110)

v(0) = u0, a(0) = H0,
∂a

∂t
(0) = H1 (111)

and

(
w, b,

∂b

∂t

)
is solution of

∂w

∂t
−∆w + w + f(u) = b, (112)

(I −∆)

(
∂2b

∂t2
+
∂b

∂t

)
−∆b = −∆w, (113)

w = b = 0, on Γ, (114)

v(0) = a(0) =
∂a

∂t
(0) = 0, (115)

with the initial data in the bounded absorbing set B0. We will now write a certain
number of a priori estimates. First, repeating the same estimates leading to (69)-
(70), but now taking f ≡ 0, we obtain

‖v(t)‖2H2(Ω)+‖a(t)‖2H2(Ω) +

∥∥∥∥∂a∂t
∥∥∥∥2

H2(Ω)

6 e−ct(‖u0‖2H2(Ω) + ‖H0‖2H2(Ω) + ‖H1‖2H2(Ω)), ∀t > 0.

(116)

We can see that S1(t)(u0, H0, H1) =

(
v(t), a(t),

∂a

∂t

)
tends to zero as t tends to

infinity.

We now consider the system (112)-(115). Multiplying (112) by ∆2w + ∆2 ∂w

∂t
,

integrating over Ω, we have

1

2

d

dt

[
‖∇w‖2 + ‖∆w‖2 + ‖∇∆w‖2

]
+ ‖∆w‖2 + ‖∇∆w‖2 +

∥∥∥∥∆
∂w

∂t

∥∥∥∥2

= ((∆b,∆w)) +

((
∆b,∆

∂w

∂t

))
−
((

∆f(u),∆
∂w

∂t

))
− ((∆f(u),∆w)).

(117)

Multiplying now (113) by ∆2b+ ∆2 ∂b

∂t
and integrate over Ω, we get

1

2

d

dt

[
‖∆b‖2 + ‖∇∆b‖2 + ‖∇b‖2 +

∥∥∥∥∆
∂b

∂t

∥∥∥∥2

+

∥∥∥∥∇∆
∂b

∂t

∥∥∥∥2

+ 2

((
∇b,∇∂b

∂t

))

+2

((
∆b,∆

∂b

∂t

))]
+ ‖∇∆b‖2 +

∥∥∥∥∆
∂b

∂t

∥∥∥∥2

+

∥∥∥∥∇∆
∂b

∂t

∥∥∥∥2

=

((
∇∆w,∇∆

∂b

∂t

))
+

((
∇∆w,∇∆b

))
.

(118)

From Hölder’s inequality, we write∣∣∣∣((∆f(u),∆
∂w

∂t

))∣∣∣∣ 6 1

2ε
‖∆f(u)‖2 +

ε

2

∥∥∥∥∆
∂w

∂t

∥∥∥∥2

(119)
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and∣∣∣∣((∆f(u),∆w

))∣∣∣∣ 6 1

2ε
‖∆f(u)‖2 +

ε

2
‖∆w‖2 6

1

2ε
‖∆f(u)‖2 + cε‖∇∆w‖2. (120)

Summing (117) and (118), insering (119) and (120) in the resulting estimate and
choosing ε > 0 small enough so that 2− cε > 0, we obtain

dE

dt
+ c

[
‖∆w‖2 + ‖∇∆w‖2 +

∥∥∥∥∆
∂w

∂t

∥∥∥∥2

+ ‖∇∆b‖2 +

∥∥∥∥∆
∂b

∂t

∥∥∥∥2

+

∥∥∥∥∇∆
∂b

∂t

∥∥∥∥2
]

6 c′‖∆f(u)‖2, (121)

where E satisfies

E > c

(
‖∇∆w‖2 + ‖∇∆b‖2 + ‖∆w‖2 +

∥∥∥∥∇∆
∂b

∂t

∥∥∥∥2
)
− c′, c > 0. (122)

Integrating (121) over (0, t) and using (115) and (122), we get

‖∇∆w(t)‖2 + ‖∆w(t)‖2 + ‖∇∆b(t)‖2 +

∥∥∥∥∇∆
∂b

∂t

∥∥∥∥2

6 c′
∫ t

0

‖∆f(u)‖2 ds. (123)

By (69), we have ∫ t

0

‖∆f(u)‖2 ds 6 CT,‖(u0,H0,H1)‖(H2(Ω))3 ,B0
. (124)

Finally inserting (124) into (123), we have

‖w(t)‖2H3(Ω) + ‖b(t)‖2H3(Ω) +

∥∥∥∥∂b∂t
∥∥∥∥2

H3(Ω)

6 CT,‖(u0,H0,H1)‖(H2(Ω))3 ,B0
. (125)

Hence, the operator S2(t)(u0, H0, H1) =

(
w(t), b(t),

∂b

∂t
(t)

)
is asymptotically com-

pact in the sense of the Kuratowski measure of noncompactness, which proves the
existence of the global attractor A.

6. Discretization of the nonconserved Caginalp phase-field system. In this
section, we present the spatial discretization using a finite element method with P1

continuous piecewise linear functions and a first-order semi-implicit scheme for the
time marching scheme.

6.1. Spatial discretization. We let Ω be a convex, planar domain and Th be
a regular, quasi-uniform triangulation of Ω with triangles of maximum size h <
1. Setting Vh = {vh ∈ C0(Ω̄); vh|Th

∈ P1(Th), ∀T ∈ Th} a finite-dimensional
subspace of H1(Ω), where P1 is the set of all polynomials of degree 6 1 with real
coefficients, we consider the weak formulation of (21)-(22):

Find uh, Hh ∈ Vh such that, ∀φh ∈ Vh,((
∂uh
∂t
− ε∆uh + uh +

1

ε
f(uh), φh

))
=

((
Hh, φh

))
,((

(Id −∆)

(
τ
∂2Hh

∂t2
+
∂Hh

∂t

)
−∆Hh, φh

))
= −

((
∆uh, φh

))
,

uh|t=0 = fuh(x,y,0), Hh|t=0 = fHh(x,y,0),
∂Hh

∂t
|t=0 = gHh(x,y,0).

(126)
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6.2. Time marching scheme. We will discretize system (126) in time using a
first-order semi-implicit scheme. To this end, let us denote by (un+1

h , Hn+1
h ) and

(unh, H
n
h ) the approximate values at time t = tn+1 and t = tn respectively and by

δt the time step. Then, owing to (126), the unknown fields at time t = tn+1 are
defined as the solution of:((

(Id + δt · (Id − ε∆))un+1
h − δt ·Hn+1

h , φh

))
=

((
unh − δt

1

ε
· f(un+1

h ), φh

))
,

(((
(τ + δt) (Id −∆)− δt2 ·∆

)
Hn+1
h + δt2∆un+1

h , φh

))
=

((
(2τ + δt) · (Id −∆)Hn

h − τ (Id −∆)Hn−1
h , φh

)) (127)

unh|t=0 = fuh(x,y,0), H
n−1
h |t=0 = fHh(x,y,0), H

n
h |t=0 = Hn−1

h |t=0 + δt · gHh(x,y,0),

in which (127) can be written equivalently in the following matrix form (AX = B):(
(Id + δt · (Id − ε∆)) (·) δtId(·)

δt2∆(·)
(
(τ + δt) (Id −∆)− δt2 ·∆

)
(·)

)(
un+1
h

Hn+1
h

)

=

(
F(unh, u

n+1
h )

G(Hn
h , H

n−1
h )

)
, (128)

where

F(unh, u
n+1
h ) = unh − δt

1

ε
· f(un+1

h ),

G(Hn
h , H

n−1
h ) = (2τ + δt) · (Id −∆)Hn

h − τ (Id −∆)Hn−1
h .

(129)

Finally, the simplest method to solve (128)–(129) is to use Picard’s iterate as
follows:

Algorithm 1:

Set unh = f0
uh

Set Hn−1
h = f0

Hh
, Hn

h = Hn−1
h + δt · g0

Hh

ComputeA(if not using adaptmesh)

For t = 2 · δt : δt : T
Compute A(if using adaptmesh)

Compute G(Hn
h , H

n−1
h )

Set unhi = unh, err = 1, (for the fixed point method used for f(u))
while err > 1e−10

Compute F(unh, u
n
hi)

Set X = [un+1
h , Hn+1

h ], Compute B, Solve AX = B
Compute err = norm (unhi − u

n+1
h )/norm (un+1

h )
Actualize unhi = un+1

h

end while

Setunh = un+1
h , Hn−1

h = Hn
h , H

n
h = Hn+1

h

End for
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7. Numerical simulations. We perform several numerical simulations using the
FreeFem++ software [24], comparing the nonconserved Caginalp phase-field system
(128)-(129) with the cubic nonlinear term f(s) satisfying (19) (respectively, (20))

and the logarithmic one f(s) = −2κ0s + κ1 ln

(
1 + s

1− s

)
when (κ0, κ1) = (ln(3), 1)

(respectively, (κ0, κ1) = (ln(6), 1)). We first start by considering the rate of con-
vergence of the first-order in time semi-implicit scheme. We then compute the
propagation of a cross function for u and a constant enthalpy H.

7.1. Rate of convergence. In this subsection, we check the convergence rates of
the nonconserved Caginalp phase-field system (128)-(129), where the values of the
L2, H1 error estimates for u and H and their corresponding convergence rates are
given in Tables 1 −→ 6.

We first start by considering the rate of convergence of the first-order semi-
implicit scheme in time, where we use P1 continuous piecewise linear functions for
the finite element space for u and H, periodic boundary conditions for u and H and
as exact solution on the unit square [0, L]× [0, L], L = 1, the functions

uex = .1 sin

(
2π x

L
− t
)

cos

(
2π y

L
− t
)

and

Hex = .1 cos

(
2π x

L
− t
)

cos

(
2π y

L
− t
)
,

adding an appropriate right-hand side function. We take κ0 = ln(3), κ1 = 1,

ε ∈ {.1, .01, .001}, τ = 3.e − 2, ∆t = ε
L

N2
with N ∈ {10, 20, 40, 80, 160} and we

measure at time T = ε the following errors: NL2(u) = ‖uh − uex‖L2 , NH1(u) =
‖uh − uex‖H1 , NL2(H) = ‖Hh −Hex‖L2 , NH1(H) = ‖Hh −Hex‖H1 .

102 · δt CPU time NL2(u) rate NL2(H) rate NH1(u) rate NH1(H) rate
1/1 00:00:02 0.00147 - 0.00124 - 0.0573 - 0.05544 -
1/4 00:00:22 0.00038 0.98 0.0003 0.98 0.02927 0.48 0.02828 0.49
1/16 00:05:58 9.5e-05 0.99 8.1e-05 0.99 0.01472 0.49 0.01422 0.49
1/64 01:50:22 2.4e-05 0.99 2e-05 0.99 0.00737 0.49 0.00711 0.49
1/256 22:06:19 6e-06 1 5e-06 0.99 0.00369 0.5 0.00357 0.49

Table 1. L2, H1 norm and error for u and H for the non-
conserved Caginalp phase-field system with ε = .1, τ = .03 and
f(s) = .83(s3 − .52s).

102 · δt CPU time NL2(u) rate NL2(H) rate NH1(u) rate NH1(H) rate
1/1 00:00:02 0.00146 - 0.00124 - 0.05725 - 0.05544 -
1/4 00:00:25 0.00038 0.98 0.0003 0.98 0.02927 0.48 0.02828 0.49
1/16 00:07:44 9.5e-05 0.99 8.1e-05 0.99 0.01472 0.49 0.01422 0.49
1/64 01:52:09 2.4e-05 0.99 2e-05 0.99 0.00737 0.49 0.00711 0.49
1/256 23:06:55 6e-06 1 5e-06 0.99 0.00369 0.5 0.00357 0.49

Table 2. L2, H1 norm and error for u and H for the non-
conserved Caginalp phase-field system with ε = .1, τ = .03 and

f(s) = −2κ0s+ κ1 ln

(
1 + s

1− s

)
.
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102 · δt CPU time NL2(u) rate NL2(H) rate NH1(u) rate NH1(H) rate
1/1 00:00:01 0.00042 - 0.00039 - 0.02458 - 0.02397 -
1/4 00:00:22 0.00011 0.98 0.0001 0.98 0.01249 0.49 0.01215 0.49
1/16 00:07:09 2.7e-05 0.99 2.5e-05 0.99 0.00627 0.49 0.00611 0.49
1/64 01:27:20 7e-06 0.99 6e-06 0.99 0.00314 0.49 0.00306 0.49
1/256 22:16:47 2e-06 1 2e-06 0.99 0.00157 0.5 0.00154 0.49

Table 3. L2, H1 norm and error for u and H for the noncon-
served Caginalp phase-field system with ε = .01, τ = .03 and
f(s) = .83(s3 − .52s).

We can note that in both cases, for ε ∈ {.1, .01, .001}, we obtain an optimal
convergence rate in time of order 1 for the L2(Ω×]0, T [) norm for u and H and of
order .5 for the L2(0, T ;H1(Ω)2) norm for u and H, which confirms the convergence
of the first-order semi-implicit scheme in time for the nonconserved Caginalp phase-
field system. We can note that we would obtain the same results for the second set
of nonlinear terms mentioned in the introduction.

102 · δt CPU time NL2(u) rate NL2(H) rate NH1(u) rate NH1(H) rate
1/1 00:00:01 0.00042 - 0.00039 - 0.02457 - 0.02397 -
1/4 00:00:24 0.00011 0.98 0.0001 0.98 0.01248 0.49 0.01215 0.49
1/16 00:07:41 2.7e-05 0.99 2.5e-05 0.99 0.00627 0.49 0.00611 0.49
1/64 01:26:11 7e-06 0.99 6e-06 0.99 0.00314 0.49 0.00306 0.49
1/256 23:06:30 2e-06 1 2e-06 0.99 0.00157 0.5 0.00154 0.49

Table 4. L2, H1 norm and error for u and H for the noncon-
served Caginalp phase-field system with ε = .01, τ = .03 and

f(s) = −2κ0s+ κ1 ln

(
1 + s

1− s

)
.

102 · δt CPU time NL2(u) rate NL2(H) rate NH1(u) rate NH1(H) rate
1/1 00:00:01 0.00013 - 0.00012 - 0.01227 - 0.01186 -
1/4 00:00:22 3.4e-05 0.98 3.2e-05 0.98 0.00625 0.49 0.00603 0.49
1/16 00:07:19 9e-06 0.99 8e-06 0.99 0.00314 0.49 0.00303 0.49
1/64 01:29:47 2e-06 0.99 2e-06 0.99 0.00157 0.49 0.00152 0.49
1/256 22:23:29 1e-06 1 1e-06 0.99 0.00079 0.5 0.00076 0.49

Table 5. L2, H1 norm and error for u and H for the noncon-
served Caginalp phase-field system with ε = .001, τ = .03 and
f(s) = .83(s3 − .52s).

102 · δt CPU time NL2(u) rate NL2(H) rate NH1(u) rate NH1(H) rate
1/1 00:00:01 0.00013 - 0.00012 - 0.01226 - 0.011863 -
1/4 00:00:24 3.4e-05 0.98 3.2e-05 0.98 0.00624 0.49 0.00603 0.49
1/16 00:07:44 9e-06 0.99 8e-06 0.99 0.00314 0.49 0.00303 0.49
1/64 01:29:12 2e-06 0.99 2e-06 0.99 0.00157 0.49 0.00152 0.49
1/256 23:22:36 1e-06 1 1e-06 0.99 0.00079 0.5 0.00076 0.49

Table 6. L2, H1 norm and error for u and H for the noncon-
served Caginalp phase-field system with ε = .001, τ = .03 and

f(s) = −2κ0s+ κ1 ln

(
1 + s

1− s

)
.
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7.2. Propagation in a square. We present in this section the propagation of the
solution in the square [0, 300] × [0, 300] of the cross function fu(x, y, 0) defined in
FreeFem++ as:

real amp =0.02,L=300.,x0=L/2.,y0=L/2.,R0=20.;

func fu=(amp *((x <= x0+R0) *(x >= x0-R0)) *(y <= y0+3*R0)*(y >=

å y0 -3*R0)+amp*((x < x0 -R0) *(x >= x0 -3*R0)) *(y <= y0+R0)

å*(y >= y0-R0)+amp *((x <= x0+3*R0) *(x > x0+R0)) *(y <= y0+

åR0)*(y >= y0-R0))-amp /2.;

and we take gH(x, y, 0) = 0. We further take δx = 2, ε ∈ {.1, .01, .001}, δt =

ε
L

N2
, τ = 3.e−2 and periodic boundary condition for u and H, taking into account

that we choose different initial data for fH(x, y, 0). Similar results can be obtained
here, considering another initial cross function with .02 < amp < 1.8.

We also use here the adaptmesh of FreeFem++ with uadapt=Hn+un,err=1.e-4

each 100 iteration, where, in that case, we obtain an error of order 10−5 with the so-
lution without using adaptmesh as shown in [38] and we gain a lot of computational
time.

We further note that the solution u starts from [−.01, .01] and goes to one of
the following values: [−α, α], α, −α (α ∈] − 1., 1.[); the solution can also explode
depending on the value of ε and the initial datum for fH(x, y, 0). This explains why
we use periodic boundary conditions and not Dirichlet ones.

More precisely, we display in Tables 7 −→ 9 the convergence of the solution u
for different values of fH(x, y, 0) when f(s) satisfies (19), while in Tables 10 −→ 12,
we take f(s) satisfying (20). We obtain opposite values of α when fH(x, y, 0) = −δ
and fH(x, y, 0) = δ, with δ > 0. We can clearly see that, for (20), the logarithmic
potential works much better than the polynomial one.

fH −35 −.1 0 .1 .2 1.5 15 35
log explose −.41 [−.37, .37] .41 .44 .62 .94 explose
pol explose −.40 [−.37, .37] .40 .43 .64 explose explose

Table 7. Comparison of the convergence of the solution u with
ε = .1.

fH −35 −.1 0 .1 .2 1.5 15 35
log −.76 [−.49, .49] [−.49, .49] [−.49, .49] .49 .52 .67 .76
pol −.86 [−.49, .49] [−.49, .49] [−.49, .49] .49 .52 .70 .86

Table 8. Comparison of the convergence of the solution u with
ε = .01.

fH −35 −.1 0 .1 .2 1.5 15 35
log −.56 [−.50, .50] [−.50, .50] [−.50, .50] [−.50, .50] [−.50, .50] .53 .56
pol −.57 [−.50, .50] [−.50, .50] [−.50, .50] [−.50, .50] [−.50, .50] .53 .57

Table 9. Comparison of the convergence of the solution u with
ε = .001.

We thus deduce that, the smaller ε is, the faster the solution converges to a
constant (negative or positive) solution 0.5 < |α| < 1. We also note that, when
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fH −35 −.1 0 .1 .2 1.5 15 35
log explose explose explose explose .92 .94 .99 explose
pol explose explose explose explose explose .94 explose explose

Table 10. Comparison of the convergence of the solution u with
ε = .1.

fH −35 −.1 0 .1 .2 1.5 15 35
log -.95 [−.93, .93] [−.93, .93] [−.93, .93] [−.93, .93] explose .94 .95
pol explose explose explose explose explose explose .96 explose

Table 11. Comparison of the convergence of the solution u with
ε = .01.

fH −35 −.1 0 .1 .2 1.5 15 35
log -.93 [−.93, .93] [−.93, .93] [−.93, .93] [−.93, .93] [−.93, .93] explose .93
pol -.94 explose explose explose explose explose explose .94

Table 12. Comparison of the convergence of the solution u with
ε = .001.

Figure 1. Solution u with fH = .1 and logarithmic potential.

Figure 2. Solution u with fH = .1 and cubic potential.

the solution lies between [−0.5, 0.5], we need more iterations and time in order to
possibly obtain the convergence.

In Figures 1 −→ 8, we consider the convergence of u and H with different values
of ε (ε = 0.1 (left), ε = 0.01 (center) and ε = 0.001 (right)) with fH(x, y, 0) = .1
or fH(x, y, 0) = 1.5 when f(s) satisfies (19). We also note that we did not observe
any influence of τ on the simulations.

Acknowledgments. The authors wish to thank Jean-Paul Chehab, Laurence Cher-
fils and Morgan Pierre for many stimulating discussions and useful comments.
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Figure 3. Solution H with fH = .1 and logarithmic potential.

Figure 4. Solution H with fH = .1 and cubic potential.

Figure 5. Solution u with fH = 1.5 and logarithmic potential.

Figure 6. Solution u with fH = 1.5 and cubic potential.
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[13] R. Chill, E, Fasangovà and J. Prüss, Convergence to steady states of solutions of the Cahn-
Hilliard equation with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448–1462.

[14] C. I. Christov and P. M. Jordan, Heat conduction paradox involving second-sound propagation
in moving medis, Phys. Review Letters, 94 (2005), 154301.
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