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In this paper we consider the numerical solution of Boussinesq-Peregrine type systems 
by the application of the Galerkin finite element method. The structure of the Boussinesq 
systems is explained and certain alternative nonlinear and dispersive terms are compared. 
A detailed study of the convergence properties of the standard Galerkin method, using 
various finite element spaces on unstructured triangular grids, is presented. Along with 
the study of the Peregrine system, a new Boussinesq system of BBM-BBM type is derived. 
The new system has the same structure in its momentum equation but differs slightly 
in the mass conservation equation compared to the Peregrine system. Further, the finite 
element method applied to the new system has better convergence properties, when 
used for its numerical approximation. Due to the lack of analytical formulas for solitary 
wave solutions for the systems under consideration, a Galerkin finite element method 
combined with the Petviashvili iteration is proposed for the numerical generation of 
accurate approximations of line solitary waves. Various numerical experiments related to 
the propagation of solitary and periodic waves over variable bottom topography and their 
interaction with the boundaries of the domains are presented. We conclude that both 
systems have similar accuracy when approximate long waves of small amplitude while the 
Galerkin finite element method is more efficient when applied to BBM-BBM type systems.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Two identifying physical properties of water waves are the nonlinearity and dispersion. Dispersion refers to the property 
of waves of different wavelength to travel with different phase speed, while the nonlinearity is related to the way waves 
interact with each other and also with the fact that waves of larger amplitude propagate faster than those of smaller 
amplitude. The balanced combination of these two properties is the basic ingredient for the existence of solitary waves. In 
fluid mechanics the propagation of water waves is described by the Euler equations of ideal fluids (inviscid and irrotational) 
[47]. Due to the complexity of the Euler equations we usually rely on numerical simulations of simplified mathematical 
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Fig. 1. Sketch of the physical domain.

models consisting of nonlinear and dispersive partial differential equations when studying the properties of water waves. 
Depending on the nature of the waves we study, there are different mathematical models to describe their propagation. For 
example there are different mathematical models for long waves, short waves, small amplitude or large amplitude waves, 
waves in small, intermediate or large water depth.

In this paper we focus on some mathematical models derived especially to describe the propagation of small amplitude, 
long waves compared to the depth of the water. If A denotes a typical wave amplitude in a general state, D0 a typical 
water depth and λ a typical wavelength, then waves that satisfy ε := A/D0 � 1 and σ := D0/λ � 1 are characterized as 
long waves of small amplitude in the shallow water regime. Moreover, usually it is required that the Stokes number is 
S := ε/σ 2 = O (1). Examples of such waves are the important cases of solitary waves and tsunamis in deep ocean waters. 
The mathematical modelling of water waves of small amplitude in a realistic environment with general bathymetry was 
initiated by Peregrine [39], by deriving asymptotically the so called Peregrine system

ηt + ∇ · [(D + η)u] = 0 ,

ut − 1

2
D∇(∇ · (Dut)) + 1

6
D2∇(∇ · ut) + g∇η + (u · ∇)u = 0 ,

Classical Peregine, (1)

where η(x, t) = η(x, y, t) denotes the free-surface elevation above an undisturbed level and u(x, t) = (u(x, y, t), v(x, y, t))
is the depth averaged horizontal velocity vector field of the water over a variable bottom with depth D(x) = D(x, y) > 0. 
A sketch of the domain is depicted in Fig. 1. It is noted that u can be thought of as the horizontal velocity of the fluid at a 
certain height above the bottom.

Peregrine’s system is known to possess solitary wave solutions similar to the Euler equations [23] and served as a base 
for the study of water waves, [20]. As a mathematical model, it can be derived using asymptotic techniques and thus has a 
different linear dispersion relation from that of the Euler equations. Although it is expected to model accurately long waves 
of small amplitude, there are special cases where the linear dispersion relation is important for the accurate approximation 
of water waves, [21]. Based on the idea of evaluating the horizontal velocity of the fluid at any depth [15], an alternative 
Boussinesq system was derived in the same regime with improved dispersion relation characteristics [36]

ηt + ∇ · ((D + η)u) + ∇ · [ãD2∇(∇ · (Du)) + b̃D3∇(∇ · u)] = 0 ,

ut + g∇η + (u · ∇)u + c̃D∇(∇ · (Dut)) + d̃D2∇(∇ · ut) = 0 ,
(2)

where now u denotes the horizontal velocity vector field evaluated at height z = −D + θ(η + D) for θ ∈ [0, 1], and ã =
θ − 1/2, b̃ = 1/2[(θ − 1)2 − 1/3]), c̃ = θ − 1 and d̃ = 1/2(θ − 1)2 (see also [34,36]).

The finite element method for the numerical solution of the Peregrine system (1) has been introduced in several 
occasions to study practical problems in coastal engineering [10,5,32,43,48]. Due to the simplicity of the mathematical 
formulation of Peregrine’s system, the formulation of the standard Galerkin finite element method in a bounded domain 
and with slip-wall boundary conditions such as u · n = 0, with n being the unit outward normal vector on the boundary 
of the computational domain, is straightforward. On the other hand its convergence properties for the specific model still 
remain unknown.

The standard Galerkin finite element method for the Peregrine system has been studied analytically only in one-
dimension and has been proven that its convergence is suboptimal when the same finite element space is used for both 
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dependent variables and it is optimal when different finite element spaces for the approximation of the free-surface eleva-
tion and the horizontal velocity are considered [7,8,6]. The two-dimensional case is different though, and the main reason 
is that the regularization operator in the momentum conservation of Peregrine’s system is the I − ∇(∇·). This operator in 
one-dimension is identical to the Laplace operator, but in two dimensions is not fully-elliptic as some of the second deriva-
tives are missing. For example, if the solution u is restricted in the curl vector field space, then this operator is just the 
identity. For this reason we will call this operator incomplete-elliptic operator. Its inversion then can create implications as 
far as it concerns the regularity of the solution as well as the convergence properties of the numerical method. It is noted 
that Nwogu’s system (with optimal in some sense linear dispersion properties [36]) contains the same incomplete-elliptic 
operator in the momentum conservation equation and thus similar behaviour in the convergence properties of the variable 
u is expected.

Another reason for observing suboptimal convergence rates, in the case of Peregrine’s system is the form of the mass 
conservation equation (1), which resembles a first order hyperbolic equation. While in Nwogu’s system the mass conserva-
tion equation is not a hyperbolic equation, the presence of the third-order spatial derivative is expected to cause different 
problems in the finite element semidiscretization and especially complications on the implementation of additional bound-
ary conditions [46]. For the numerical implementation of a finite element method for Nwogu’s system we refer to [45]. 
These peculiarities have been realised in [34] where Boussinesq systems were modified by using the irrotationality condi-
tion that governs ideal fluids with potential flow. A particular regularized system of BBM-BBM type was derived in [34] in 
the form

ηt + ∇ · [(D + η)u] − 1

6
∇ · (D2∇ηt) = 0 ,

ut + g∇η + (u · ∇)u − 1

6
D2�ut = 0 .

(3)

This system is analogous to the BBM-BBM system derived in [14] in the flat bottom case. The BBM (Benjamin-Bona-Mahony), 
[12] terminology refers to the presence in the model of a third order term with two spatial and one time derivative, like 
the last two terms in (3).

Although the finite element method for the specific system appears to converge with optimal rate, the disadvantage of 
the specific regularized system is that the inversion of the elliptic operator requires non-slip wall boundary conditions of 
the form u = 0 or the computation of the tangential component of the velocity vector field on the boundary of the domain 
[24,25]. Non-slip wall boundary conditions can be restrictive while the computation of the tangential component of the 
velocity on the boundary of the domain can be rather complicated. On the other hand, such BBM-BBM type system was 
shown to have very good performance in studies of water waves over variable bottom [42,28,34] and for this reason certain 
improvements can be made so as to make slip-wall boundary conditions easily applicable.

In this paper we compare computationally various Peregrine type models, reveal their qualitative and quantitive char-
acteristics and evaluate their ability to model the propagation of water waves of small amplitude and long wavelength. In 
particular, we study computationally the convergence properties of the standard Galerkin finite element method for the 
Peregrine system (1) and we show that the effects of the hyperbolic form of the mass conservation results in suboptimal 
convergence rates for the surface elevation. Optimal convergence rates can be obtained only by using different finite element 
spaces between the free-surface elevation and the velocity field. We also show that optimal convergence rates for the ve-
locity variable can be achieved by replacing the incomplete-elliptic regularization operator in the momentum conservation 
equation by the Laplace operator as in system (3). This substitution can be explained using asymptotic arguments. Of course 
such modification will inflict again restrictive zero Dirichlet boundary condition on the velocity vector field. We also show 
that the nonlinearity has no implication on the convergence properties of the numerical method. In particular, modifying 
the nonlinearity that appears in the momentum conservation equation to one given in conservative form using the same 
asymptotic arguments we observed the same convergence properties.

Finally, we derive a new form of the BBM-BBM system, (3) which is appropriate for slip-wall boundary conditions. The 
new system appears to have optimal convergence rates for the free-surface elevation variable. The momentum conservation 
equation retains the same mathematical formulation as in the Peregrine system and thus slip-wall boundary conditions 
can be used in a straightforward manner. The new system appears to be highly accurate in the appropriate shallow water 
regime and due to the better convergence properties it can be used as an alternative system for the computations of long 
water waves of small amplitude. The numerical models are validated against standard benchmarks where the numerical 
solutions are compared with laboratory data. For the numerical generation of accurate approximation of solitary waves in 
the experiments we describe a Galerkin finite element method combined with the Petviashvili iteration [40] for the solution 
of the resulting nonlinear equations. To the best of our knowledge this is the first time that the Petviashvili method is 
combined successfully with the finite element method to produce approximate solitary waves, for a system of equations in 
two space dimensions.

The structure of the paper is as follows: In Section 2 after reviewing the Peregrine system and its properties, we derive 
the version of the Peregrine system with the standard elliptic regularization operator and the modified nonlinearity. In 
the same section we derive also the new BBM-BBM type system, which is appropriate for slip-wall boundary conditions. 
Section 3 is devoted to the study of the convergence properties of Finite Element Methods for the various Boussinesq 



4 T. Katsaounis et al. / Journal of Computational Physics 417 (2020) 109579
systems. The numerical generation of solitary waves is presented in Section 4 and further testing of the accuracy of the 
numerical methods on the propagation of solitary waves is considered. The numerical generation of solitary waves is based 
on the Petiasvili method described in the Appendix A. Section 5 presents standard benchmark experiments for Boussinesq 
systems showing that all models with the same asymptotic behaviour result to very similar physically sound solutions. 
Conclusions and further developments are discussed in Section 6.

2. Mathematical models

2.1. Notation

Let � ⊂R2 be a bounded set with smooth boundary 	 = ∂� and let L2(�) denote the standard Lebesque space of square 
integrable functions in �. We shall use the standard notation for the Sobolev spaces defined on � and their corresponding 
norms:

V := H1(�) =
{
φ ∈ L2(�) : ∇φ ∈ L2(�)

}
, ‖φ‖2

1 = ‖φ‖2 + ‖∇φ‖2,

where ‖ · ‖ denotes the norm in V , (· , ·) is the corresponding inner product in � and 〈· , ·〉 the inner product on 	. 
The extension to vector fields is straightforward, i.e. if u = (u1, u2), v = (v1, v2) ∈ L2(�)2, then (u, v) = ∑2

i=1(ui, vi) and 
‖u‖2 = ∑2

i=1 ‖ui‖2. Further we shall also work with the Sobolev spaces

H(div,�) =
{

v ∈ L2(�)2 : ∇ ·v ∈ L2(�)
}

,

with norm

‖v‖2
H(div) = ‖v‖2 + ‖∇·v‖2 . (4)

The bottom topography is described by D(x) and is independent of time. Further, we assume throughout this work that 
D(x) is smooth and there are positive constants Dm, D M such that 0 < Dm ≤ D(x) ≤ D M .

2.2. Boussinesq-Peregrine type systems

A plethora of Boussinesq systems along with their mechanical balance laws can be derived from the full Euler equations 
for inviscid and irrotational ideal fluids [47,13,2]. In this paper, we consider Peregrine’s system [39] which can be derived 
from the Euler equations, and we make appropriate asymptotic modifications in order to derive systems with favourable 
properties and overcome certain difficulties arising in Peregrine’s systems.

We consider first a modification of Peregrine’s system comprised of two decoupled equations for the two components 
of the depth averaged velocity. This system also generalizes the respective “classical” Boussinesq system of [14] for general 
bottoms.

In what follows we consider characteristic quantities for typical waves in the Boussinesq regime, in particular a typical 
wave amplitude a0 and length λ0 and a typical depth D0. We will denote the linear wave speed by c0 = √

g D0. We also 
consider the dimensionless variables

x̃ = x

λ0
, t̃ = c0

λ0
t, ũ = D0

a0c0
u, η̃ = η

a0
, D̃ = D

D0
. (5)

Then Peregrine’s system (1) can be written in the nondimensional and scaled form:

∂t̃ η̃ + ∇ ·
(
(D̃ + εη̃)ũ

)
= 0 ,

∂t̃ ũ − σ 2 1

2
D̃∂t̃∇

(
∇ · (D̃ũ)

)
+ σ 2 1

6
D̃2∂t̃∇

(∇ · ũ
) + ε

(
ũ · ∇)

ũ + ∇η̃ = 0 ,

(6)

where ε = a0/D0 and σ = D0/λ0. In the Boussinesq regime we have ε ≈ σ 2 � 1 while the Stokes (or Ursel) number is 
S = ε/σ 2 = O (1).

The standard derivation of Peregrine’s system doesn’t take into account the irrotationality condition of the flow, [39], 
which although is not satisfied exactly, it can be expressed, [34] as:

ũ ỹ = ṽ x̃ + O (σ 2) . (7)

Using the former relation we observe that the dispersive terms of Peregrine’s system can be simplified to the following:

∇ (∇ · ũt̃

) = �ũt̃ + O (σ 2) ,

∇
(
∇ · (D̃ũt̃)

)
= D̃�ũt̃ + ∇(∇ D̃ · ũt̃) + ∇ D̃∇ · ũt̃ + O (σ 2) .

(8)
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From the second equation of (6) we observe that

ũt̃ = −∇η̃ + O (ε,σ 2) . (9)

Using (9) into the second equation of (8) we obtain the relation

∇
(
∇ · (D̃ũt̃)

)
= D̃�ũt̃ − ∇(∇ D̃ · ∇η̃) − ∇ D̃�η̃ + O (ε,σ 2) . (10)

Furthermore, using (7) we can rewrite the nonlinear term of the second equation of (6) in the following form

(
ũ · ∇)

ũ = 1

2
∇|ũ|2 + O (σ 2) . (11)

Then the Peregrine system can be written, with the help of (8), (10) and (11), in the form:

∂t̃ η̃ + ∇ ·
(
(D̃ + εη̃)ũ

)
= 0 ,

∂t̃

(
ũ − σ 2 1

3
D̃2�ũ

)
+ 1

2
σ 2 D̃

(
∇(∇ D̃ · ∇η̃) + ∇ D̃�η̃

)
+ ε

1

2
∇|u|2 + ∇η̃ = O (ε2,σ 4) .

(12)

Discarding the high-order terms, system (12) is written in dimensional form

∂tη + ∇ · ((D + η)u) = 0 ,

∂t

(
u − 1

3
D2�u

)
+ 1

2
g D (∇(∇D · ∇η) + ∇D�η) + 1

2
∇|u|2 + g∇η = 0 .

(13)

The last system generalises the classical Boussinesq system derived for horizontal bottom D(x) = D0 in [14] to the case 
of a general bottom. Similar Boussinesq-type systems have been derived in [34]. It is noted that (6) cannot be recovered 
from the analogous regularized Boussinesq systems derived in [34], even in one-dimensional case by choosing appropriate 
coefficients, [42].

Assuming that D is very smooth, i.e. ∂ i
x D = ∂ i

y D = O (ε) for i > 0, we can simplify further system (12) to the following 
simplified Peregrine system with smooth bottom topography (see also [18]), written in dimensional variables

∂tη + ∇ · ((D + η)u) = 0 ,

∂t

(
u − 1

3
D2�u

)
+ 1

2
∇|u|2 + g∇η = 0 ,

Simplified Peregrine . (14)

Further, using again the first equation of (8) we get from (12) another system, written in dimensional variables

∂tη + ∇ · ((D + η)u) = 0 .

∂t

(
u − 1

3
D2∇(∇ · u)

)
+ 1

2
∇|u|2 + g∇η = 0 ,

Modified Peregrine . (15)

System (15) will be called modified Peregrine system. It is noted that the differences in the dispersive terms between the 
simplified and the modified systems require different treatment in the boundary conditions as well. The modified and 
classical Peregrine systems share the same type of elliptic operator while they have different nonlinear terms.

Remark 2.1. Existence and uniqueness of solutions to (1) is studied in [27] in the case where the domain is the whole space. 
In particular it’s been shown that under high-regularity assumptions on the bottom topography D ∈ Ḣ N+2(R2) for N ≥ 4, 
system (1) has a local in time, unique solution (u, η) ∈ C([0, T ], X N (R2) × H N(R2)), where Ḣ N(R2) = { f ∈ L2

loc(R
2), ∇ f ∈

H N−1(R2)} and X N(R2) = {u ∈ L2(R2), ‖u‖2
X N = ∑N

|α|=0 ‖∂αu‖2
L2 + μ‖∂α∇ · u‖2

L2 < ∞} for 0 < μ � 1. Well-posedness of 
system (1) in bounded domains has only been established in one-space dimension, cf. [41,1].

2.3. A new BBM-BBM system

In Peregrine-type systems the mass conservation equation is represented by a first-order partial differential equation. 
It is known from the theory of finite element method that this kind of differential equations can result to suboptimal 
convergence rates. The same behaviour is expected in the case of Peregrine’s system as well, [7]. For this reason we proceed 
also to the derivation of a BBM-type system with small bottom variations, where the mass conservation will contain a 
regularisation term.

In [34] a BBM-type system describing weakly nonlinear and weakly dispersive waves propagating over a variable bottom 
was derived by modifying both the mass and momentum conservation equations so as to avoid the grad-div operator. Here 
we will perform the same technique but only for the mass equation. We first evaluate the horizontal velocity of the fluid 
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uθ at some height z = −D + θ(εη + D), with θ ∈ [0, 1]. Then the velocity uθ is related to the depth average velocity u [36]
with the formula

uθ = u − σ 2ã
D

2
∇(∇ · (Du)) − σ 2b̃

D2

3
∇(∇ · u) + O (σ 4) , (16)

with ã = θ − 1/2 and b̃ = 1/2[(θ − 1)2 − 1/3]. Substitution of (16) into (6) leads to Nwogu’s system

ηt + ∇ · ((D + εη)uθ ) + σ 2∇ · [ãD2∇(∇ · (Duθ )) + b̃D3∇(∇ · uθ )] = O (εσ 2,σ 4) ,

uθ
t + ∇η + ε(uθ · ∇)uθ + σ 2[c̃D∇(∇ · (Duθ

t )) + d̃D2∇(∇ · uθ
t )] = O (εσ 2,σ 4) ,

(17)

with

ã = θ − 1/2, b̃ = 1/2[(θ − 1)2 − 1/3], c̃ = θ − 1 and d̃ = 1/2(θ − 1)2 , (18)

(see also [34,36]). Following again [34], we have that D∇(∇ · uθ ) = ∇(∇ · (Duθ )) − ∇(∇D · uθ ) − ∇D∇ · uθ and substitution 
into (17) we obtain the regularized system

ηt + ∇ · ((D + εη)uθ ) − σ 2b̃∇ · [D2(∇(∇D · uθ ) + ∇D∇ · uθ )] + σ 2(ã + b̃)∇ · [D2∇(∇ · (Duθ ))] = O (εσ 2,σ 4) ,

uθ
t + ∇η + ε(uθ · ∇)uθ + σ 2[c̃D∇(∇ · (Duθ

t )) + d̃D2∇(∇ · uθ
t )] = O (εσ 2,σ 4) .

(19)

Observing now from (19) that ∇ · (Duθ ) = −ηt + O (ε, σ 2) we write Nwogu’s system in a new regularized form as

ηt + ∇ · ((D + εη)uθ ) − σ 2b̃∇ · [D2(∇(∇D · uθ ) + ∇D∇ · uθ )] − σ 2(ã + b̃)∇ · [D2∇ηt] = O (εσ 2,σ 4) ,

uθ
t + ∇η + ε(uθ · ∇)uθ + σ 2[c̃D∇(∇ · (Duθ

t )) + d̃D2∇(∇ · uθ
t )] = O (εσ 2,σ 4) .

(20)

To simplify further the system we make the assumption of small bottom variations. For example we assume that the bottom 
is very smooth in the sense that the derivatives of D are of O (ε). Another way to see that is to express D = D0 + Db , where 
Db is the variation of the bottom topography from its mean value D0, and assume that Db/D0 = O (ε). Although this 
assumption can result in a system without any contribution of the bottom variations to the dispersive terms, [18], we 
choose to simplify only the terms ∇(∇D · uθ ) + ∇D∇ · uθ = O (ε) so as to keep as many bottom effects as possible in the 
dispersive terms and at the same time derive a simple and easy to handle system. The system (20) is simplified then to

ηt + ∇ · ((D + εη)uθ ) − σ 2(ã + b̃)∇ · [D2∇ηt] = O (εσ 2,σ 4) ,

uθ
t + ∇η + ε(uθ · ∇)uθ + σ 2[c̃D∇(∇ · (Duθ

t )) + d̃D2∇(∇ · uθ
t )] = O (εσ 2,σ 4) .

(21)

This is a BBM-BBM-type system because of the existence of the regularized term in the mass conservation equation. A sim-
ilar system with additional simplifications to the momentum equations was derived in [34]. It is noted that although we 
can simplify the dispersive terms in the momentum equation as well, we keep the original form because it is easier to use 
slip-wall boundary conditions (for example this is harder to do with the relatively more simplified system of [34]) and also 
to be in agreement with Peregrine’s and Nwogu’s systems. After dropping the high-order terms, we write the system (21)
in dimensional form as

ηt + ∇ · ((D + η)uθ ) − (ã + b̃)∇ · [D2∇ηt] = 0 ,

uθ
t + g∇η + (uθ · ∇)uθ + c̃D∇(∇ · (Duθ

t )) + d̃D2∇(∇ · uθ
t ) = 0 .

(22)

In order for the system (22) to be well posed it is required that 1/3 ≤ θ2 ≤ 1, [13,14]. Comparing the linear dispersion 
relation of the system (22) with the corresponding relation of the Euler equations we observe that the parameter θ = 1
results to the system which has the closest linear relationship with that of the Euler equations. In order to obtain an exact 
generalisation of the BBM-BBM system of [14,13] we take θ = √

2/3 so that ã + b̃ = −(c̃ + d̃) = 1/6 and the system after 
dropping the θ in the notation is written

ηt + ∇ · ((D + η)u) − 1

6
∇ ·

(
D2∇ηt

)
= 0 ,

ut + g∇η + (u · ∇)u +
(√

2

3
− 1

)
D∇(∇ · (Dut)) +

(
5

6
−

√
2

3

)
D2∇(∇ · ut) = 0 .

(23)

For the rest of the paper we will call (23) BBM-BBM system since it coincides with the well-known one-dimension BBM-
BBM system when assuming the bottom is flat [13]. If we take θ = √

1/3 then we recover the classical Boussinesq system 
of [13] but with different coefficients in front of the dispersive terms compared to those of the classical Peregrine system 
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Fig. 2. Comparison of linear dispersion relations.

when the bottom is not flat. Because the system with θ = √
1/3 doesn’t contribute to the current work, other than the 

information that in the Boussinesq regime is reasonable to assume that ∇D = O (ε), we will not consider it further.
In order to simulate slip wall boundary conditions with the BBM-BBM system we impose zero Neumann boundary condi-

tions ∇η · n = 0 on the free-surface elevation and u · n = 0 on the velocity vector field at the boundary of the computational 
domain. The boundary condition for η is not restrictive but is consistent with the total reflection of water waves on the 
vertical wall, [35], and it is also satisfied by the Euler equations exactly [31]. It also appears naturally into the numerical 
scheme, since it doesn’t require any modification of the finite element spaces (and the Sobolev spaces) from the respective 
spaces we use for the Peregrine system.

The linear dispersion relations of the previously mentioned systems are given by the relations

cB BM√
g D

= 1

1 + (Dk)2/6
and

cPeregrine√
g D

= 1√
1 + (Dk)2/3

,

while the linear dispersion relation of the Euler equations is

cEuler√
g D

=
√

tanh(Dk)

Dk
.

In the previous relations D is assumed to be the depth of the flat bottom and k is the wavenumber of the linear waves. A 
comparison of the two dispersion relations of the linearized BBM-BBM and Peregrine systems with those of the linearized 
Euler equations and Nwogu’s system are presented in Fig. 2. It is easily observed that Nwogu’s system has better dispersive 
properties compared to other Boussinesq systems (as expected) while Peregrine’s system is better than the BBM-BBM system 
on this account. Of course in the long-wave limit all dispersion relations converge to the correct value and thus we do not 
expect discrepancies between the solution of the BBM-BBM system and the other Boussinesq systems.

Remark 2.2. Following [34] one can derive also the previously mentioned Boussinesq systems (22) assuming that the bottom 
depends on time, i.e. it is of the form D(x, y) + ζ(x, y, t), where the time-dependent part is of the same order of magnitude 
as the free-surface elevation η. For example the new BBM-BBM system takes the form:

ηt + ∇ · ((D + ζ + η)uθ ) − (ã + b̃)∇ · [D2∇ηt] = −ã∇ · (D2∇ζt) − ζt ,

uθ
t + g∇η + (uθ · ∇)uθ + c̃D∇(∇ · (Duθ

t )) + d̃D2∇(∇ · uθ
t ) = −c̃D∇ζtt ,

(24)

where ã, b̃, c̃ and d̃ are given by (18). The corresponding Peregrine system (1) can be written as

ηt + ∇ · [(D + ζ + η)u] = −ζt ,

ut + g∇η + (u · ∇·)u − 1

2
D∇(∇ · (Dut)) + 1

6
D2∇(∇ · ut) = D

2
∇ζtt .

(25)

The forcing terms of the moving bottom terms can be used not only for simulating waves generated by moving bottoms such 
as tsunamis [34] but also for the accurate simulation of waves generated due to a wavemaker. We discuss this application 
in detail in a later section (see also [44,45]).

All the aforementioned Boussinesq-Peregrine systems are augmented with initial and boundary conditions and can be 
written in the following compact form, where the values of Es, E and N are presented in Table 1
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Table 1
Peregrine-Boussinesq type models.

Model Es(η) E(u) N (u)

Classical η u − 1
2 D∇ (∇ · (Du)) + 1

6 D2∇ (∇ · u) (u · ∇) u

Simplified η u − 1
3 D2�u 1

2 ∇|u|2
Modified η u − 1

3 D2∇(∇ · u) 1
2 ∇|u|2

BBM-BBM η − 1
6 ∇ · (D2∇η

)
u +

(√
2
3 − 1

)
D∇(∇ · (Du)) +

(
5
6 −

√
2
3

)
D2∇(∇ · u) (u · ∇) u

∂tEs(η) + ∇ · ((D + η)u) = 0,

∂tE(u) +N (u) + g∇η = 0,

u · n = 0, on ∂� Classical, Modified and BBM-BBM,

u = 0, on ∂� Simplified,

∇η · n = 0, on ∂� BBM-BBM,

u(x,0) = u0(x), η(x,0) = η0(x).

(26)

3. Finite element approximations

We consider now the application of the finite element method for obtaining approximations to the models presented 
in the previous section. To simplify the presentation of the finite element method we assume in the sequel, without loss 
of generality, that � is a closed polygonal domain that might contain holes and with boundary 	. On � we consider a 
regular triangulation Th , [19] consisting of triangles K , �̄ = ∪K K , with hK denoting the diameter of K and h the maximum 
diameter of these triangles, h = max{hK , K ∈ Th}. Further, for a positive integer r let P r(K ) denote the space of bivariate 
polynomials of degree ≤ r on K .

For the approximation of (η, u) we consider the standard finite element spaces V r
h consisting of Lagrange-type polyno-

mial basis functions of degree at most r:

V r
h = {φ ∈ C(�) : φ|K ∈ P r(K ), K ∈ Th}, U r

h = V r
h × V r

h, (27)

and V r
h and U r

h are finite dimensional subspaces of V and V × V respectively.

Remark 3.1. The form of the elliptic part of the Peregrine system (1) suggests of using finite element subspaces of H(div, �). 
This approach can be worked out possibly in the framework of a mixed finite element method where an appropriate 
discretization of the nonlinear term in (1) must be considered. Here, we follow a different approach and we consider finite 
element subspaces of H1(�).

Remark 3.2. In general we will seek approximations of η and u from different finite element subspaces V r1
h and U r2

h respec-
tively, where r1, r2 are, possibly different, positive integers.

Remark 3.3. The numerical results reported in this and the following sections were obtained by using in part the FEniCS
computational framework, [3,33].

3.1. Fully discrete schemes

We consider now the finite element discretization of systems (26). For t > 0, we seek (ηh(t), uh(t)) ∈ V r1
h × U r2

h such that

(∂tEs(ηh),ψ) − Fs(ηh,uh,ψ) = 0, Fs(ηh,uh,ψ) = −(∇ · ((D + ηh)uh) ,ψ), ∀ψ ∈ V r1
h ,

(∂tE(uh),φ) − Fu(ηh,uh,φ) = 0, Fu(ηh,uh,φ) = −(N (uh),φ) − g(∇ηh,φ), ∀φ ∈ U r2
h .

(28)

Performing a standard integration by parts, as in the elliptic case (30) we obtain the following semidiscrete formulation

∂tCs(ηh,ψ) = Fs(ηh,uh,ψ), ∀ψ ∈ V r1
h ,

∂tC(uh,φ) = Fu(ηh,uh,φ), ∀φ ∈ U r2
h ,

ηh(0) = Pη0, uh(0) = Pu0,

(29)

where
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C(uh,φ) := A(uh,φ)+B(uh,φ) + 1

3

CN

h
〈Duh · n, Dφ · n〉 = (f,φ), ∀φ ∈ U r

h,

A(u,v) =(u,v) + 1

3
(∇·(Du),∇·(Dv)) + 1

6
(u · ∇D,v · ∇D)

+ 1

6
(u · ∇D,∇·(Dv)) − 1

6
(∇·(Du),v · ∇D)

B(uh,φ) = − 1

3
〈∇ ·(Duh), Dφ · n〉 − 1

6
〈uh · ∇D, Dφ · n〉

− 1

3
〈∇ ·(Dφ), Duh · n〉 − 1

6
〈φ · ∇D, Duh · n〉,

(30)

and Cs(ηh, ψ) = (ηh, ψ) or Cs(ηh, ψ) = (ηh, ψ) + (∇ηh, ∇ψ) while P denotes the L2-projection on the finite element space. 
The bilinear forms C(·, ·) and Cs(·, ·) are continuous and coercive with respect to ‖D · ‖H(div) and ‖ · ‖1 respectively, thus 
system (29) has a unique solution.

The system of ordinary differential equations (29) is discretized by using the classical fourth-order accurate, four-stage 
explicit Runge-Kutta method (RK4). Indeed, this method is used as a time stepping mechanism for all the numerical exper-
iments presented in the sequel. The method is described by the following Butcher tableau,

A τ
b

=

0 0 0 0 0
1/2 0 0 0 1/2

0 1/2 0 0 1/2
0 0 1 0 1

1/6 1/3 1/3 1/6

. (31)

We use a uniform time-step �t and the temporal grid is tn = n�t , where n = 0, 1, · · · . Given the ODE y′ = �(t, y), one step 
of this four-stage RK scheme (with yn approximating y(tn)) is:

for i = 1 → 4 do
ỹn,i = yn + �t

∑i−1
j=1 aij yn, j

yn,i = �(tn,i, ỹn,i), tn,i = tn + τi�t
end for
yn+1 = yn + �t

∑4
i=1 bi yn,i .

We introduce the notation (Hn, Un) ≈ (ηh(tn), uh(tn)) and (DHk, DUk) = (Hk − Hn, Uk − Un). Then, one complete timestep 
of the RK4 method applied to system (29) is

for i = 1 → 4 do
DH̃n,i = �t

∑i−1
j=1 aij Hn, j

DŨn,i = �t
∑i−1

j=1 aij Un, j

Cs(Hn,i, ψ) = Fs(tn,i, H̃n,i, Ũn,i, ψ), tn,i = tn + τi�t

C(Un,i, φ) = Fu(tn,i, H̃n,i, Ũn,i, φ), tn,i = tn + τi�t
end for
DHn+1 = �t

∑4
i=1 bi Hn,i, DUn+1 = �t

∑4
i=1 bi Un,i .

It is easily seen that at every timestep �t it is required the numerical solution of four linear systems with the 
time-independent matrix Cs(ψi, ψ j) and four with the matrix C(φ i, φ j). In our computer code we used the sparse LU
decomposition of FEniCS, which appeared to be the most efficient method compared to other iterative methods such as the 
conjugate gradient (with the Jacobi preconditioner) and the generalised minimal residual methods (with the incomplete LU
preconditioner).

3.2. Spatial convergence rates and stability

We turn now our attention to the convergence of the fully-discrete scheme. We begin with the validation of the scheme 
by performing accuracy tests and computing the experimental order of convergence (EOC) for various choices of the finite 
element spaces. We compute the EOC based on the error between the exact and approximate solution measured in the 
L2, H1 norms:
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E O C = log

(
E1

E2

)
/ log

(
h1

h2

)
, (32)

where E1, E2 are the normed errors and h1, h2 are the corresponding mesh sizes.
It is known that the standard Galerkin method applied to Peregrine’s system in 1D with reflective boundary conditions 

converges with a suboptimal convergence rate, [6,7]. Specifically, it was shown that for linear elements the convergence 
rates of the L2 error for the velocity u was optimal 2, while for the free surface η was suboptimal and equal to 3/2. The 
convergence rates of the H1 error was also shown to decrease with a suboptimal rate of 1/2 for the free-surface variable η, 
while the convergence rate of the respective H1 error for the velocity variable was optimal and equal to 1.

In similar situations it has been observed that using different finite element spaces for the dependent variables can be 
beneficial and can result to a fully-discrete scheme that converges with optimal rate to the exact solution, [8,35]. On the 
other hand, in the case of other Boussinesq-type systems, such as the Bona-Smith system, the order of convergence can be 
different between one and two space dimensions, [24,9]. For these reasons, it’s unrealistic to have expectations for specific 
convergence rates for our numerical method unless we check.

We compute the EOC’s by the method of manufactured solutions. We choose an exact solution (η, u), we compute ap-
propriate right-hand side f using the differential equations and then solve a non-homogeneous problem. For the classical, 
modified and the new Peregrine systems we choose an exact solution that satisfies the boundary condition u · n = 0. How-
ever for the simplified Boussinesq system we need to choose a different exact solution since an extra boundary condition 
u = 0 is needed due to the presence of the Laplacian in the regularisation operator. As for η, Neumann boundary condition 
is taken for the BBM-BBM system due to the presence of the BBM-term in the continuity equation, while no extra boundary 
condition is considered for the other models. The value of η is the same for all systems. The exact values for (η, u) are:

u(x, t) = e(x+y)t
(

cos
(π

2
y
)

sin(πx), cos
(π

2
x
)

sin(π y)
)

, Classical, Modified, BBM-BBM ,

u(x, t) = et
(

x cos
(π

2
x
)

sin(π y), y cos
(π

2
y
)

sin(πx)
)

, Simplified ,

η(x, t) = et cos(πx) sin(π y) .

(33)

We also consider a linearly varying bottom topography

H(x, y) = − 1

20
(x + y) + 3

2
,

which represents a sloping bottom with slope 1/20. We integrate numerically the non-homogeneous Peregrine-Boussinesq 
type systems and we compute the experimental orders of convergence (E O C ) based on the L2, H1 and H(div) errors 
between the numerical and the exact solutions, as in (32). All the computations where performed in the unit square � =
[0, 1] × [0, 1] with final time T = 1. On � we consider a regular uniform triangulation Th consisting of equilateral triangles 
and we denote as h the length of a side. The temporal time step was taken �t = 5 × 10−4 to ensure that the contribution 
of the time-stepping method to the total error is negligible. For approximation we use finite element spaces V r1

h , U r2
h with 

various polynomial degrees r1, r2 = 1, 2, 3, 4.
The errors measured in L2 and H1 norms for (η, u) are shown in Figs. 3 and 4 respectively for five different combinations 

of the values r1 and r2. The behaviour of the error for each variable and each model is presented with solid lines in log-log 
scale for various values of the discretization parameter h. In each graph the corresponding optimal rate is depicted by a 
dashed line with optimal slope.

We consider first (ηh, uh) in finite element spaces (V r
h, U r

h) of the same polynomial degree r with r = 1, 2, 3, 4. The 
EOC’s for η in the L2 and H1 norms for the classical, modified and simplified systems are exactly the same for all values 
of r, but suboptimal by 1/2 for the odd degree polynomials and suboptimal by 1 for the even degree basis functions. For 
the BBM-BBM system the optimal EOC is obtained in both norms. The latter is attributed to the presence of a BBM-type 
term in the continuity equation, first equation of (23). The situation is somehow different for the EOC’s for u. For r = 1 the 
EOC’s are optimal in the L2 and H1 norms for all systems. However for r = 2, 3, 4 the situation differs and for the classical, 
modified and BBM-BBM systems the EOC’s in both L2 and H1 norms are suboptimal by 1. On the other hand, the optimal 
EOC is achieved for the simplified system since the corresponding elliptic operator involves the Laplacian.

We tested also three cases where the degree of polynomials (r1, r2) of the finite element spaces (V r1
h , U r2

h ) differ by 1
and in particular we took (r1, r2) = (1, 2), (2, 3), (3, 4). For odd values of r1 the optimal EOC’s for η were obtained in both 
norms and for all systems, while for even values of r1 all the EOC’s are suboptimal by 1, except for the BBM-BBM system 
which the EOC’s are optimal. For u and for odd values of r2 the resulting EOC’s are suboptimal by 1 in both norms for the 
classical, modified and BBM-BBM systems, but optimal for the simplified system. For even values of r2 the convergence rates 
for u are suboptimal by 1 in both norms for the simplified, BBM-BBM systems and suboptimal by 2 for the classical and 
modified systems. Convergence rates for u were also computed in the H(div)-norm. These rates proven to be optimal for all 
the systems and all the choices of r1 and r2.

All these results are summarized in Table 2 where by Ek(·), k = 0, 1 we denoted the EOC in the L2 and H1 respectively, 
while Ed(·) is the corresponding EOC in the H(div) norm.
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Fig. 3. Log-Log plot of errors in the L2-norm: η in left column and u in right column.

Remark 3.4. The computational convergence rates are the same as in the one-dimensional case, [35], which suggests the 
same behaviour of the system in two-dimensions.

The presence of the incomplete-elliptic operator E(u), Table 1(a) in the left hand side of the systems (26) makes the 
corresponding o.d.e. systems (29) mildly stiff and the fully discrete schemes are stable under a relaxed CFL-type condition. 
We provide now some indicative numerical results concerning the size of the Courant number. To do so, we consider a 
solitary wave of various amplitudes A and we study its propagation using the classical Peregrine system (1) and the newly 
derived BBM-BBM system (23). For both systems we compute the largest Courant number such that the propagation is 
stable. We consider a channel [−50, 100] of constant depth D(x) = 1 and the initial location of the solitary wave is at 
x = −20. The channel is covered by an unstructured triangulation of 33192 triangles with a minimum size hmin ∼ 0.09. 
We integrate both systems up to T = 100 and we compute Courant number defined as cs

�t
hmin

, where cs = √
g(D + A) is 

the phase speed of the solitary wave and �t is the time step. We tested solitary waves with five different amplitudes, 
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Fig. 4. Log-Log plot of errors in the H1-norm: η in left column and u in right column.

namely we took A = 0.05, 0.1, 0.2, 0.4, 0.5. The maximum allowed Courant numbers in all test cases were of the order of 
10 showing that the method is essentially unconditionally stable, [8].

Remark 3.5. The suboptimal convergence rates for the velocity field in the L2-norm appeared for the classical, modified 
Peregrine and BBM-BBM systems are due to the combination of variable bathymetry and the Nitsche method for the slip-
wall boundary conditions. When flat bottom topography is considered, the convergence rates for the velocity field are 
optimal in the L2-norm in all these cases.

4. Solitary waves

In this section we study the accuracy of the numerical methods in the propagation of a solitary wave and we present 
some differences in the behaviour of the numerical solutions between the Peregrine and BBM-BBM systems. Since both 
systems with flat bottom are reduced to the respective Boussinesq systems of [13] it is known that they possess classical 
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Table 2
EOC’s for (η, u) for various choices of polynomial degree r1, r2.

Classical Modified
η u η u

(r1, r2) E0(η) E1(η) E0(u) E1(u) Ed(u) E0(η) E1(η) E0(u) E1(u) Ed(u)

(1,1) 1.5 0.5 2 1 1 1.5 0.5 2 1 1
(2,2) 2 1 2 1 2 2 1 2 1 2
(3,3) 3.5 2.5 3 2 3 3.5 2.5 3 2 3
(4,4) 4 3 4 3 4 4 3 4 3 4
(1,2) 2 1 2 1 2 2 1 2 1 2
(2,3) 2.5 1 2 1.5 2 2 1 2 1 3
(3,4) 4 3 4 3 4 4 3 4 3 4

Simplified BBM-BBM
η u η u

(r1, r2) E0(η) E1(η) E0(u) E1(u) Ed(u) E0(η) E1(η) E0(u) E1(u) Ed(u)

(1,1) 1.5 0.5 2 1 1 2 1 2 1 1
(2,2) 2 1 3 2 2 3 2 2 1 2
(3,3) 3.5 2.5 4 3 3 4 3 3 2 3
(4,4) 4 3 5 4 4 5 4 4 3 4
(1,2) 2 1 3 2 2 2 1 2 1 2
(2,3) 2 1 3 2 3 3 2 3 2 3
(3,4) 4 3 5 4 4 4 3 4 3 4

line solitary wave solution [23] that propagate with constant speed and without change in shape at any direction. Due to 
the lack of exact analytical formulas for the solitary wave solutions of the systems at hand we employed the Petviashvili 
method for their numerical generation. The method is presented briefly in the Appendix A.

4.1. Solitary wave propagation

The finite element method has been applied to the Peregrine system before using linear elements in several works. 
While in [5,10,43] the propagation of small amplitude solitary waves has been reported to be approximated in a satisfactory 
way using linear elements, in [48] was shown that significant oscillations can be generated behind large amplitude solitary 
waves during their propagation along a channel. These large oscillations do not affect the stability of the numerical method 
but they pollute the numerical solution and decrease its resolution. The streamline diffusion method was proposed in [48], 
to smooth-out the trailing spurious oscillations. However, the streamline diffusion method is expensive, hard to implement 
and also adds unwanted damping to the solution. Studying the propagation of a solitary wave of amplitude A = 0.3 of 
Peregrine’s system in the channel [−20, 30] × [−1, 1] with depth D = 1 up to time T = 25 we observed that using linear 
elements for all the dependent variables leads to the generation of significant oscillations behind the solitary pulse as shown 
in Fig. 5 (a), see also Fig. 6. These oscillations are of the exact same nature with those reported in [48]. Repeating the same 
experiment with the BBM-BBM system for a solitary wave of the same amplitude and with the same elements we didn’t 
observe spurious oscillations as the inversion of the elliptic operator in the mass conservation equation regularizes the 
solution completely. The regularized solution of the BBM-BBM system is presented in Fig. 5 (b). Increasing also the degree 
of the finite elements for the approximation of the velocity field u we observe that the spurious oscillations are eliminated. 
Of course, because the initial conditions are not exact travelling waves to the numerical model but just approximations, it is 
expected that the solitary pulse will be followed by a small amplitude trailing tail which will be of the same magnitude as 
that of the error of the approximation. Thus taking a finer grid or increasing the degree of the finite elements the trailing 
tails will be decreased in magnitude.

In Fig. 6 we present a cross-section along the x-axis of the three solutions shown in Fig. 5 at T = 25. In this figure we 
can observe clearly the spurious oscillations generated due to the hyperbolic nature of the mass conservation equation of 
the Peregrine system with P1 − P1 elements, which are significantly larger than the oscillations generated for the same 
system using P1 − P2 elements or in the case of the BBM-BBM system with P1 − P1 elements. In the same figure also 
we observe that in all cases the solitary wave travelled without significant change in shape and speed. The good behaviour 
of the finite element method with linear elements for similar BBM-BBM systems has been observed also in [24,25]. A 
more interesting observation though here is that the trailing spurious oscillations are eliminated by the use of high-order 
Lagrange elements. For example, using quadratic elements for the discretization of the velocity field yields a clean solution 
presented in Fig. 5 (c). It is noted than in these experiments we considered �t = 0.1 and the same grid with the one 
used to generate the solitary waves with the Petviashvili method, Appendix A. The previous study of the convergence rates 
along with the present study of the propagation of the solitary waves suggest that the use of at least quadratic elements 
for the velocity field of the Peregrine system is mandatory for more accurate and highly-resolved numerical solutions of 
the Peregrine system. Alternatively, the use of the new regularized BBM-BBM system can be beneficial. In all the following 
numerical experiments we use linear elements in the approximation of the free-surface elevation and quadratic elements 
for the approximation of the velocity field.
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Fig. 5. Propagation of a solitary wave of amplitude A = 0.3 up to T = 25. (D = 1, g = 1).

Fig. 6. Cross-section along x-axis and comparison between the numerical and the exact solution at T = 25.

5. Numerical experiments

In this section we consider two different experimental settings that demonstrate the ability of the numerical method 
to handle the propagation and evolution of solitary waves in general two-dimensional domains and variable bottom bathy-
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Fig. 7. Triangulation around the cylinder and location of the wavegauges.

metric features. Because there are not known exact formulas for the solitary wave solutions propagating without change in 
shape over a flat bottom H0 of the systems under consideration, we considered the approximations of the solitary wave 
obtained using the Petviashvili method, see Appendix A.

The experiments we use here, have been used before to validate similar mathematical and numerical models and seem to 
be appropriate for the regime of weakly nonlinear and weakly dispersive water waves. It is noted that in all the experiments 
we used V 1

h for the finite element approximation of η and U 2
h for u.

5.1. Scattering of solitary wave by a vertical cylinder

In this first experiment, the propagation of a small amplitude solitary wave and its interaction with a vertical cylinder is 
numerically investigated. The laboratory experiment was designed and presented in [10]. The particular experiment has been 
used for validation purposes for various Boussinesq systems [30]. In this experiment, a rectangular channel of dimensions 
[−4, 20] ×[0, 0.55] was used. A vertical cylinder of diameter 0.16 m was placed at (4.5, 0.275). The solitary wave considered 
had amplitude A = 0.0375 m. For the purposes of the numerical experiment we considered the same domain and the initial 
condition was translated such as its maximum pick was at 2.085 m. The free-surface elevation η was recorded in six 
wave-gauges located at wg1 = (4.4, 0.275), wg2 = (4.5, 0170), wg3 = (4.5, 0.045), wg4 = (4.6, 0.275), wg5 = (4.975, 0.275), 
wg6 = (5.375, 0.275). The computational domain was discretised using a regular triangulation consisted of 22, 285 triangles. 
The timestep is taken �t = 10−3. The triangulation and locations of the wave-gauges around the cylinder are presented in 
Fig. 7.

In every case of Boussinesq system, the solitary wave propagates without significant change in shape (as there are no 
analytical solutions known for any of the systems it is expected that the approximate solitary wave will propagate as a 
solitary wave after shedding a small amplitude trailing dispersive tail). The recorded surface elevation at the wave-gauges 
agree with the experimental data of [10]. The results are presented in Fig. 8. Apparently, the BBM-BBM system leads to 
very accurate results indicating that not only we achieved better convergence of the numerical method but also as a model 
is a good approximation of the Euler equations for the specific water wave regime. Compared to the numerical results of 
[10] we observe that the results obtained with the current finite element method using triangular grid are better. Possible 
explanation could be the better resolution of the computational domain and the higher-convergence properties because of 
the mixed finite element spaces we used. Compared to the results obtained using the optimised Nwogu’s system in [30]
again we observe that in both cases the results are very similar indicating that for the specific experiment, because the 
solitary wave has relatively small amplitude, the dispersion relation of the weakly nonlinear structure of the mathematical 
problems is not significant.

The interaction of the solitary wave with the cylinder causes the scattering of small amplitude dispersive waves. Due to 
the small width of the channel, the reflected waves propagate like one dimensional waves. On the other hand, as it was 
observed in similar numerical experiments with wide channel, these waves propagate as expanding waves in all directions, 
[26]. These features can be seen in a series of snapshots of the free surface η(x, t) in Fig. 9 at various time instances, and 
with more details in Fig. 10, where we present the results obtained with the BBM-BBM system.

5.2. Reflection of shoaling waves

In the second experiment we consider the shoaling of two solitary waves and their reflection by a vertical wall so as to 
study the efficiency of the numerical method in experiments with variable bathymetry. The specific experiments have been 
used before for the validation of various Boussinesq systems [22,44,35]. The propagation of the solitary waves is considered 
in a channel with dimensions [−50, 20] × [0, 1]. The bottom topography in this experiment consists of a flat bottom of 
depth 0.7 m for x < 0 and for all y and a linear bathymetry of slope 1/50 for x ∈ [0, 20] and for all y. The free-surface 
elevation is recorded by three wave-gauges located at (0.0, 0.5), (16.25, 0.5) and (17.75, 0.5). In the first case, the solitary 
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Fig. 8. Recorded solution at the six wave-gauges.

Fig. 9. Interaction of the solitary wave with the cylinder at t = 4.688, t = 4.928, t = 5.152, t = 5.472 (left to right, top to bottom), BBM-BBM system.
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Fig. 10. Interaction of the solitary wave with the cylinder at t = 4.832, t = 5.024, t = 6.4, t = 7.536 (left to right, top to bottom), BBM-BBM system.

wave has initial amplitude 0.07 m. The computational domain was discretised using 14, 402 triangles. The time-step was 
taken �t = 10−3.

Because of the small amplitude of the specific solitary wave and the relatively large depth, the solitary wave propagated 
without significant change of shape in all cases and the results fit very well with the laboratory data. Similar observations 
where made for other Boussinesq systems as well [44,35] as the specific regime is in favour of all Boussinesq models. It is 
remarkable that the BBM-BBM system is again closed to the experimental data. The numerical method seems to be efficient 
during the shoaling and the reflection of the solitary wave. Fig. 11 presents the recorded surface elevation at the three 
wave-gauges.

We also performed the same experiment with a solitary wave of amplitude 0.12 m over the same bottom as before. 
The numerical results obtained at the three wave-gauges are presented in Fig. 12. Again the results are very satisfactory 
especially for the new BBM-BBM system as it appears, even in this case, the results are slightly better compared to the 
results obtained using the Peregrine system.

For the specific experiment the best performance has been observed by the Serre system which is appropriate for exper-
iments with large amplitude solitary wave as there is no small-amplitude assumption in its derivation [35,29].

5.3. Periodic waves over a submerged bar

In this section we test the numerical method against a laboratory experiment [11] designed to test the nonlinear and 
dispersive properties of Boussinesq systems with variable bathymetry. The specific experiment has been used in several 
works and is one of the standard benchmarks for numerical models [21,30,44]. In this experiment, small-amplitude periodic 
waves are generated by a wave-maker and propagate over a bathymetry defined by the function

D(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

−0.05x + 0.7, x ∈ [6,12)

0.1, x ∈ [12,14)

0.1x − 1.3, x ∈ [14,17]
0.4, elsewhere

and depicted in Fig. 13. When the generated waves interact with the upward part of the submerged bar, they shoal and 
become steep, generating higher-harmonics. Then the waves as they propagate over the downward part of the bar propagate 
faster covering a wide range of wavenmbers in the spectrum of long waves. In order to simulate the wave-maker we use 
the technique suggested in [44] by considering the time-dependent bottom topography incorporated into the Boussinesq 
systems (24) and (25). Specifically, we consider a time-dependent Gaussian bump centred at x = 2.01 described by the 
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Fig. 11. Surface elevation recorded at the three wave-gauges: Case A = 0.07.

Fig. 12. Surface elevation recorded at the three wave-gauges: Case A = 0.12.
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Fig. 13. The bathymetry in relation to the sponge layers, wave maker and wave gauges locations.

Fig. 14. Free-surface elevation recorded at six wave-gauges above the submerged mount.

function ζ(x, y, t) = ae−4(x−2.01)2
cos(−ωt) with ω = 2π/τ , τ = 2.02 and a = 0.017. The parameters of the moving part 

of the bottom have been chosen in accordance to [44]. As the bottom oscillates the periodic waves are generated at the 
free surface with period k = 2.02. Although the experiment is typically one-dimensional, here we consider the rectangular 
domain [−15, 35] ×[0, 1] and a triangulation consisted of 2, 500 triangles. The timestep in this experiment is taken �t = 0.1. 
In order to avoid reflection from the lateral boundaries we also apply two sponge layers in the regions with x ∈ [−15, 0]
and x ∈ [25, 35] represented by yellow colour in Fig. 13. The sponge layers are applied in each region by adding terms of 
the form s(x) · η in the mass conservation equation and using appropriate function s(x) = c exp(−a(x − x0)

2). It is noted 
that the sponge layer terms do not require additional boundary conditions and that the amount of the reflected waves is 
of negligible importance. Similar boundary layers have been used in [44,45]. The free surface of the water is recorded at 
wave-gauges located at x = 10.5, 12.5, 13.5, 14.5, 15.7 and 17.3. The locations of the wave-maker and the wave-gauges 
are depicted by vertical broken lines in Fig. 13. The comparison of the free-surface elevation as predicted by the models 
and the experimental data is shown in Fig. 14. It is known that Boussinesq systems usually fail to predict the correct 
waves at the wave gauges located further away from the wave-maker as the waves generated are nearly breaking and thus 
outside of the long and small amplitude water wave regime. Boussinesq systems with improved dispersion and nonlinear 
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characteristics, such as Nwogu’s system [36], appear to have better behaviour in this experiment although again the errors 
can be large. In our case, both models have almost the same behaviour. As it was also observed in [11] for the Peregrine 
system, both numerical models start to diverge from the laboratory data after the wave-gauge (d). Moreover, we observe 
that the numerical results obtained using the BBM-BBM system are in agreement with the numerical results obtained with 
Peregrine’s system until the wave-gauge (e) located at x = 15.7. After that, the two models start to diverge mainly because 
they have different dispersion relation from the Euler equations.

Remark 5.1. The results of the BBM-BBM system can approximate those obtained using Peregrine’s system dramatically by 
considering for example θ = √

1/3 − 0.01, which on one hand has linear dispersion relation very close to the Peregrine 
system and in addition contains the regularization operator in the mass conservation equation. The numerical solution of 
the particular system is not presented here since it is very similar to the analogous solution of the Peregrine system.

Remark 5.2. In all the experiments, the mass conservation error was below 10−5.

6. Conclusions and perspectives

The application of the standard Galerkin finite element method was studied in the case of the Peregrine system with 
slip-wall boundary conditions. A detailed study of the convergence rates revealed suboptimal convergence properties of 
the Galerkin method for the particular initial-boundary value problem. Specifically, when we considered the same finite 
element space for all the dependent variables of the system, then the numerical solution ηh converged to the free-surface 
elevation η in the L2-norm with rate of the order O (hr+1/2) for elements of degree r with r odd, and O (hr) when r was 
even (when the optimal rate is O (hr+1)). The convergence rate of the numerical solution uh to the velocity field u was 
of order O (hr) independently of the degree r except the case of linear element r = 1 where the convergence was optimal. 
The convergence of both variables ηh and uh in H1-norm is one degree smaller than the corresponding rate in L2-norm. 
Surprisingly the convergence of uh to u was optimal in the H(div)-norm. Mixed finite element methods improved the 
convergence rates in η but not in u which remained suboptimal. The suboptimal convergence rates in u are due to the 
significance of the regularization operator which is incomplete-elliptic. This conclusion was drawn after studying alternative 
systems with different nonlinearity (modified Peregrine system) and by replacing the incomplete-elliptic operator by the 
standard Laplacian (simplified Peregrine system) using asymptotic arguments. Although the simplified Peregrine system has 
better convergence properties, it is hard to be used in situations with slip-wall boundary conditions as it requires the 
velocity field to be zero on the boundary.

Another problematic situation occurs in the Galerkin method for the Peregrine system when piecewise linear elements 
are used in two-space dimensions, namely, spurious oscillations can appear behind smooth non-breaking waves propagating 
over flat bottom. This phenomenon appears because of the hyperbolic structure of the mass conservation equation of the 
Peregrine system, and can be resolved by using piecewise quadratic (or other high-order) Lagrange elements for the velocity 
field and/or the free-surface elevation.

A new Boussinesq system of BBM-BBM type was also proposed as an alternative to Peregrine’s system. The momentum 
conservation equation of the new system has the same structure with the respective equation of the Peregrine system while 
the mass conservation equation has the classical elliptic regularization operator which regularizes the solution so that no 
spurious oscillations can be observed even with the use of piecewise linear elements. Moreover, the convergence rates for 
the free-surface elevation variable are optimal, while the convergence rates for the velocity field is optimal again only in 
the H(div)-norm following the same convergence pattern as the Peregrine system. This phenomenon is due to the variable 
bottom topography and the Nitsche method used to approximate the slip-wall boundary conditions. In the case of flat 
topography the convergence rate for the velocity field is optimal even in the L2 norm.

All the numerical models were tested against standard benchmark experiments within the region of validity of the 
Boussinesq systems. In particular, we studied the scattering of a line solitary wave by a vertical cylinder, the shoaling of 
solitary waves and their reflection by a vertical wall and the interaction of periodic waves propagating over an underwater 
obstacle. The comparison between the new BBM-BBM and the Peregrine systems showed that both systems share the same 
accuracy against the experimental data for the specific experiments. Thus, the new system can be used in principle as a 
good alternative to the Peregrine system.

Finally, because there are not any known analytical formulas for solitary wave solutions in closed form of any of the 
aforementioned systems we employed the Petviashvili method for the computation of numerical approximations of the 
line solitary waves into the same finite element spaces used for the discretization of the partial differential equations. The 
convergence and the speed of the Petviashvili method was unexpectedly fast. Further studies for this particular numerical 
method will follow in the future.

The main conclusions and perspectives are summarised here:

• The Galerkin finite element method for Boussinesq systems including other Boussinesq type systems where the mass 
conservation has the form of a hyperbolic conservation law, requires the use of at least quadratic Lagrange elements in 
the approximation of the velocity field to achieve satisfactory resolution of the numerical solution.
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• Despite the fact that BBM-BBM type systems have less accurate linear dispersion relationship compared to Nwogu’s 
system, it seems that in practical problems related to small amplitude long waves, they appear to be as accurate as the 
Peregrine system.

• The Petviashvili method applied to the solution of nonlinear equations resulted from the discretization of partial differ-
ential equations with finite element methods appear to be very efficient and with good convergence properties.
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Appendix A. The Petviashvili iteration

In nonlinear and dispersive wave systems of Boussinesq type, although there is well-established theory for the existence 
of classical solitary wave solutions, there are only a few cases of analytical formulas for travelling wave solutions [16,
17,23]. For the classical Boussinesq system the only formulas known for travelling wave solutions have η = −D0. This 
means that there is no water, but a solitary wave profile in the velocity field. These travelling wave solutions, although 
are useful for testing purposes, they have no physical context. For BBM-BBM type systems one can find analytical formulas 
for travelling wave solutions which again are not of the sech2-form and their negative excitation is below the bottom 
topography D0 [16,17]. Since the exact formulas for travelling wave solutions known for these systems are not solitary waves 
of the classical sense [23], then if physically relevant solitary wave solutions are required one should employ numerical 
methods for their computation. In the sequel we describe a numerical method commonly used for such computations in 
the context of Galerkin / finite element method.

The Petviashvili method [40], is a modified fixed point method for solving nonlinear equations originally derived from 
equations for solitary waves. Although Petviashvili’s method has been applied and studied analytically using Fourier / pseu-
dospectral methods [38,4] it has been applied successfully with Galerkin finite element methods as well [37].

Here we first present the Petviashvili iteration for the approximation of the line solitary waves of the Peregrine system 
using a Galerkin finite element method. Assume that we seek travelling wave solutions of the form

η(x, t) = η(ξ ), u(x, t) = u(ξ) , (34)

where ξ = (ξ, ζ ) with ξ = αx − cst − x0, x0 ∈R, and ζ = α⊥x. This represents a travelling wave solution propagating with 
constant speed cs , without change in shape, in a channel aligned along the direction of the vector α = (αx, αy)

T , |α| = 1
over a flat bottom D(x) = D0, that tends to zero at infinity, while there are no restrictions along the vertical to α direction 
α⊥ = (αy, −αx)

T . Because the domain for the numerical simulations must be bounded, we assume that the channel is long 
enough so as the exponentially decreasing solitary wave fits along the α direction in the sense that at the edges of the 
domain the solitary wave is practically zero. Substituting the ansatz (34) into Peregrine’s equations (1) we obtain the system 
of partial differential equations

− csηξ + ∇ξζ · (D0 + η)Au = 0 ,

− csuξ + g A∇ξζ η + (u · A∇ξζ )u + cs
1

3
D2

0 A∇ξζ (∇ξζ · Auξ ) = 0 ,
(35)

where ∇ξζ = (∂ξ , ∂ζ )T and

A =
(

αx αy

αy −αx

)
.

Multiplying the second equation in (35) with A and denoting w = (w, w̃) where

w = α · u, w̃ = α⊥ · u , (36)

then the system (35) becomes

− csηξ + ∇ξζ · (D0 + η)w = 0 ,

− cswξ + g∇ξζ η + (w · ∇ξζ )w + cs
1

D2
0∇ξζ (∇ξζ · wξ ) = 0 .

(37)
3
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Assuming that the solution is constant along the direction of the vector α⊥ then system (37) can be simplified after 
integration into the system

−csη + (D0 + η)w = 0 ,

−cs w + gη + 1

2
w2 + cs

1

3
D2

0 wξξ = 0 ,

w̃ = 0 ,

(38)

where we intentionally keep the dependence of the equations on w̃ to emphasize the fact that we are looking for two-
dimensional waves and also for implementational purposes. Eliminating η in (38) we obtain the relation

η = D0 w

cs − w
, (39)

between the unknowns η and w and the partial differential equation

Lw = N (w) , (40)

with

L =
(

cs − 1
3 D2

0cs∂ξξ 0
0 1

)
and N (w) =

( 1
2 w2 + g D0 w

cs−w
0

)
. (41)

Solving the equation (40) for w we recover the free-surface elevation from (39). In order to solve (40) we employ again the 
standard Galerkin finite element method: seek wh ∈ U r2

h satisfying the equation written in the weak form

Lh(wh,χ ) = (N (wh),χ ), for all χ ∈ U r2
h , (42)

where Lh(w, χ) is the bilinear form

Lh(w,χ) = cs(w, φ) + 1

3
D2

0cs(wξ , φξ ) + (w̃,ψ),

defined for all w = (w, w̃) ∈ U r2
h and χ = (φ, ψ) ∈ U r2

h . In order to solve the nonlinear equation (42), we use the Petrvi-
ashvilli’s iteration defined as

Lh(wn+1
h ,χ ) = Mγ

n (N (wn
h),χ ), ∀χ ∈ U r2

h , n = 0,1, · · · , (43)

where Mn is the scalar

Mn = Lh(wn
h,wn

h)

(N (wn
h),wn

h)
. (44)

The function w0
h can be the L2-projection of any initial guess w0 of the solitary wave solution onto the finite element space 

V r1
h . As an approximation to the line solitary waves of the Boussinesq systems we considered the functions

η0(ξ) = Asech2 (λξ) ,

w0(ξ) = csη
0(ξ)/(D0 + η0(ξ)) ,

w̃0(ξ) = 0 ,

(45)

with cs = √
g(D0 + A), and λ =

√
3A/4D3

0. The exponent γ is taken to be equal to 2 but it can be any number in the 
interval [1, 3]. Computing the approximation wh , we can construct the function ηh by considering the L2-projections of (35)
in V r1

h , while the velocity field uh can be recovered by solving the linear system (36).
Substitution of the ansatz (34) into the BBM-BBM system (23) with flat bottom D(x) = D0 and following similar compu-

tations as before, leads to the system

−csη + (D0 + η)w + 1

6
cs D2

0∇2
ξζ η = 0 ,

−cs w + gη + 1

2
w2 + 1

6
cs D2

0 wξξ = 0 ,

w̃ = 0 .

(46)

In this case we cannot eliminate the variable η as in the Peregrine system so instead of solving a scalar ordinary differential 
equation we practically need to solve a system of equations that involves also the variable η. The system (46) can be written 
in the form
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L̃w = Ñ (w) , (47)

with w = (η, w, w̃)T and

L̃ =
⎛
⎝cs − 1

6 cs D2
0∇2

ξζ −D0 0
−g cs − 1

6 cs D2
0∂

2
ξ 0

0 0 1

⎞
⎠ and Ñ (w) =

⎛
⎝ ηw

1
2 w2

0

⎞
⎠ . (48)

The Galerkin finite element method for solving system (47)–(48) is then expressed as follows: week for the approximation 
wh := (ηh, wh)T ∈ V r1

h × U r2
h , such that

L̃h(wh,χ ) = (Ñ (wh),χ ) , for all χ ∈ V r1
h × U r2

h , (49)

where L̃h is the bilinear form

L̃h(w,χ) = cs(η,φ) + 1

6
cs D2

0(∇ξζ η,∇ξζ φ) − D0(w, φ)

+ cs(w,χ) + 1

6
cs D2

0(wξ ,χξ ) − g(η,χ) + (w̃,ψ) ,

(50)

for all w = (η, w, w̃)T ∈ V r1
h × U r2

h and χ = (φ, χ, ψ)T ∈ V r1
h × U r2

h . Given an initial guess for w0
h for the solitary wave 

solution of the BBM-BBM system, the Petviashvili method for solving the nonlinear system of equations (49) is then defined 
similarly to the analogous method for the Peregrine system:

L̃h(wn+1
h ,χ ) = M̃γ

n (Ñ (wn
h),χ ), n = 0,1, · · · , (51)

for all χ ∈ V r1
h × U r2

h and M̃n the scalar

M̃n = L̃h(wn
h,wn

h)

(Ñ (wn
h),wn

h)
. (52)

The initial guess for the solitary wave solution can be taken again to be (45).
As a stopping criterion for the Petviashvili’s iteration we consider the norm of the normalized residual to be less than a 

prescribed tolerance δ. Specifically, we consider the stopping criterion

Rn = |L̃h(wn
h,wn

h) − (Ñ (wn
h),wn

h)|/‖wn
h‖2 < δ ,

with δ appropriate tolerance. In this paper we take δ = 10−5. In all the experiments we tested the convergence tolerance 
was satisfied in less than 20 iterations. For example, when we consider the horizontal channel [−20, 30] × [−1, 1] and 
we seek for solitary waves travelling in the direction α = (1, 0)T with depth D0 = 1 and g = 1 the Petviashvili method 
converged to a solitary wave of amplitude A = 0.3 with tolerance δ = 10−5 in 5 iterations for the BBM-BBM system and 
in 16 iterations for the Peregrine system. For this experiment we considered an unstructured grid of 9, 510 triangles with 
maximum diameter 0.24 and minimum 0.09. The propagation of this solitary wave is presented in Section 4.1.

Remark A.1. The exact relationship between speed and amplitude is known only for the Peregrine system [6], which is

cs =
√

6(D0 + A)√
3D0 + 2A

√
g D0(D0 + A) log

(
D0+A

D0

)
− g D0 A

A
.

For the BBM-BBM system, where there is not any known speed-amplitude relationship, the appropriate solitary wave can 
be achieved using a continuation method.
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