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We present finite-element numerical algorithms for the identification of vortices in quantum fluids 
described by a macroscopic complex wave function. Their implementation using the free software 
FreeFem++ is distributed with this paper as a post-processing toolbox that can be used to analyse 
numerical or experimental data. Applications for Bose-Einstein condensates (BEC) and superfluid helium 
flows are presented. Programs are tested and validated using either numerical data obtained by solving 
the Gross-Pitaevskii equation or experimental images of rotating BEC. Vortex positions are computed 
as topological defects (zeros) of the wave function when numerical data are used. For experimental 
images, we compute vortex positions as local minima of the atomic density, extracted after a simple 
image processing. Once vortex centers are identified, we use a fit with a Gaussian to precisely estimate 
vortex radius. For vortex lattices, the lattice parameter (inter-vortex distance) is also computed. The 
post-processing toolbox offers a complete description of vortex configurations in superfluids. Tests 
for two-dimensional (giant vortex in rotating BEC, Abrikosov vortex lattice in experimental BEC) and 
three-dimensional (vortex rings, Kelvin waves and quantum turbulence fields in superfluid helium) 
configurations show the robustness of the software. The communication with programs providing the 
numerical or experimental wave function field is simple and intuitive. The post-processing toolbox can 
be also applied for the identification of vortices in superconductors.
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(in 2D) and tetrahedral (in 3D) finite elements. For simulation data, the zeros of the wave function 
are directly computed and the circulation of the velocity on triangles sides is assessed. Vortices are 
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the image contrast.
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Additional comments including restrictions and unusual features: Running time is from seconds to minutes 
depending on the mesh resolution of the simulation/experimental data.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The nucleation of quantized vortices, with fixed (quantized) 
circulation and fixed core diameter is a striking feature of the 
two main known quantum fluids: superfluid helium and atomic 
Bose-Einstein condensate (BEC). Liquid helium below the critical 
(lambda) temperature Tλ = 2.17 K is also called He II and is gener-
ally described as a mixture of two fluids with independent velocity 
fields: a normal viscous fluid and an inviscid superfluid. In the su-
perfluid component, a large number of quantized vortices of the 
atomic size are nucleated and their complex interactions lead to 
a Quantum Turbulence (QT) state. The vortex line density plays 
an important role in the statistical description of QT and is usually 
measured in experiments using second sound probes [1]. Visualisa-
tions of vortices in superfluid helium are relatively recent and offer 
only a qualitative picture of vortex reconnections [2]. Therefore, 
considerable theoretical and numerical efforts (see dedicated re-
views or volumes [3–5]) were devoted to unravel properties of vor-
tex interactions in He II. The Gross-Pitaevskii (GP) model has been 
extensively used to explore properties of QT in an ideal setting 
containing only the superfluid [6–8]. Even though the GP equation 
offers only a partial description of the complexity of superfluid he-
lium, quantum vortex interactions are accurately described without 
any additional phenomenological models.

The extraction of vortices from a GP numerical dataset pro-
viding values of the complex macroscopic wave function (order 
parameter) ψ is thus an important tool to study properties of QT 
turbulence in superfluid helium. The main difficulty in this setting 
is the existence of a very large number of vortices with tangled 
shapes resulting from multiple reconnections. The identification of 
vortices is however simplified by the fact that vortices are evolv-
ing into a uniform background quantum flow of constant atomic 
density n = |ψ |2 = n0. The main application of the algorithms and 
programs presented in this paper is the extraction of multiple vor-
tex lines from a given complex wave function field ψ , resulting 
from numerical simulations of QT based on the GP model.

Quantized vortices have been extensively studied in BECs, since 
their existence provides an evidence of the superfluid nature of 
these systems. Different vortex generation methods were used in 
experimental BEC setups: based on the drag on an object mov-
ing through the condensates [9], by rotating the trap confining 
the atoms [10,11], or by phase-engineering of topological defects 
[12]. Experimental observations were systematically supplemented 
with numerical simulations based on the GP equation, which is 
in this case (dilute BEC at zero temperature) the standard math-
ematical model. Different types of vortices have been observed in 
experiments or numerical simulations of BEC: Abrikosov triangular 
vortex lattices [13], bent vortex lines of “U” or “S” shapes [14,15], 
giant vortices [16–18] or more exotic shapes of vortices (double 
rings, hopfions, stars, etc.) [19,20]. Experimental images of quan-
tized vortices in BEC are typically obtained by switching-off the 
magnetic trap and imaging (after a time of flight) the absorption of 
a resonant laser beam propagating along the z-axis. The obtained 
pictures, showing atomic density integrated along the z-axis, are 
then used to extract the size and the average position of the con-
densate [21]. Note that vortex cores are larger in BEC (5 · 10−7m) 
than in superfluid helium (10−10m) and thus more easily observ-
able. Note also that recent experimental and theoretical studies 
[22,23] reported different possible routes to QT in BEC.
2

Another application of the algorithms and programs presented 
in this contribution is the possibility to accurately post-process BEC 
experimental images, as well as wave function fields provided by 
GP numerical simulations of BEC. The difficulty in the BEC case 
is that vortices are topological defects (zeros of the wave function) 
on the top of a non-constant atomic density that also vanishes out-
side the condensate. This background density depends on the BEC 
setting (trapping potential, rotation) and is taken into account in 
the algorithm extracting vortices. The post-processing thus sepa-
rates the non-condensed cloud from the condensate, extracts the 
background atomic density to isolate vortices and finally fits each 
individual vortex with an anisotropic Gaussian to compute vortex 
radius.

Even though the present toolbox can be easily used with ex-
perimental images of quantum systems with vortices (superflu-
ids, superconductors), the main intended application is the link 
with numerical systems providing a 2D or 3D field of the com-
plex wave function ψ . Numerical results of vortices in superfluids 
are generally presented using contours of the atomic density in 
2D simulations or iso-surfaces of low atomic density in 3D sim-
ulations. Precise methods for the tracking of vortices in complex 
fields were developed in [24] using a Newton-Raphson method to 
determine the zeros of the wave function combined with Fourier 
interpolation for the evaluation of the wave function outside grid 
points. Caliari and Zuccher [25] suggested another method adapted 
to spectral Fourier computations, based on non-equispaced Fast 
Fourier Transform to truncate Fourier series at arbitrary points and 
finally identify vortex line positions during vortex reconnection. 
A fast real-time visualisation technique of vortices in QT simula-
tions of high resolution simulations was developed in [26] using a 
graph-based method.

The advantage of using the present toolbox is to use generic un-
structured grids with finite elements in 2D and 3D that can be sub-
sequently refined around vortices. Adapted mesh provides accurate 
identification of vortex centers, vortex lines description and vortex 
radius computation. These quantities are important in assessing 
physical and mathematical theories on vortex dynamics or QT in 
BEC or superfluid helium. A great number of software packages for 
solving different forms (stationary, time-dependent, with non-local 
or high-order interactions) of the GP equation exist in the CPC Pro-
gram Library. Spatial discretizations are generally based on spectral 
[27–30], finite-elements [31,32] or finite-difference [33–38] meth-
ods. Provided programs are written in Fortran [27,33], C [34,35], 
Matlab [28,35,29,37,30], FreeFem++ [32] or C and Fortran with 
OpenMP [38]. All these programs could benefit from the use of the 
present post-processing toolbox that can be easily interfaced with 
any type of space discretization by writing the output complex 
wave function fields in a standard finite-element format (examples 
of how to write data are provided in Sect. 7).

The organization of the paper is as follows. In Sect. 2 we intro-
duce the GPE model and the characterisation of quantized vortices. 
Sections 3 and 4 present the main algorithms used for the iden-
tification of vortices in GP simulations of BECs for 2D and 3D 
configurations, respectively. Section 5 is dedicated to the identi-
fication of vortices in experimental images. Programs architecture 
and main parameters of the toolbox are described in Sect. 7. We 
present various 2D (Abrikosov vortex lattice, giant vortex) and 3D 
(bent vortex, vortex knot, Kelvin waves and vortices in QT) bench-
marks used for the validation of our codes in Sect. 6. Finally, the 
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main features of the toolbox and its possible extensions are sum-
marized in Sect. 8.

2. The Gross-Pitaevskii model and quantized vortices

2.1. The Gross-Pitaevskii equation

The Gross-Pitaevskii equation describes the time-space evolu-
tion of the macroscopic wave function of a dilute gaseous BEC in 
the limit of zero temperature. For a BEC of N atoms confined in 
a trapping potential V trap(x) and rotating with angular velocity �, 
the GP equation is:

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V trapψ + g|ψ |2ψ − � ·L(ψ), (1)

where L is the angular momentum, h̄ the reduced Planck con-
stant and m the atomic mass. The constant in front of the non-
linear term depends on the scattering length as , as g = 4π h̄2as

m . 
The atomic density n(x) = |ψ(x)|2 vanishes outside the condensate 
and thus natural boundary conditions for (1) are homogeneous 
Dirichlet conditions (ψ(x) → 0 as x → ∞). When Eq. (1) is used 
to describe superfluid helium, the trapping potential and the an-
gular velocity are set to zero and periodic boundary conditions 
are assumed. Considering rotations along the z-axis (i.e. � = � k)

implies that only the z-component of the angular momentum ap-
pears in Eq. (1) and the rotation term can be presented as [39–41]:

� ·L(ψ) = �Lzψ = ih̄�

(
y
∂ψ

∂x
− x

∂ψ

∂ y

)
= ih̄� At∇ψ,

with At = (y,−x,0). (2)

The following general quadratic ± quartic form of the trapping po-
tential describes most of the existing theoretical and experimental 
studies of rotating BECs [32]:

V trap(x, y, z) = m

2

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)

+ U2

(
r

w2

)2

+ U4

(
r

w4

)4

, r2 = x2 + y2, (3)

where ωx, ωx, ωx are trapping frequencies of the classical har-
monic (∼ r2) trapping potential and U2, U4, w2, w4 are character-
istics of the detuned laser beam adding the quartic part (∼ r4) of 
the potential and a supplementary (positive or negative) quadratic 
term [16]. The conservation of the number of atoms N inside the 
condensate is expressed as:∫
R3

|ψ(x)|2 dx = N. (4)

2.2. The Thomas-Fermi approximation

The Thomas-Fermi regime is characterized by strong interac-
tions (the kinetic energy is negligible compared to the interaction 
energy). In absence of rotation, the Thomas-Fermi density is clas-
sically [42] obtained from Eq. (1) by considering stationary so-
lutions ψ(x, t) = φ(x) exp(−iμt/h̄) and neglecting the Laplacian 
term (corresponding to kinetic energy):

V trap(x) + g|φ|2 = μ. (5)

The corresponding Thomas-Fermi atomic density then takes a sim-
ple form:
3

nTF(x) = |φTF|2 =
(

μ − V trap(x)

g

)
+

. (6)

The constant μ is the chemical potential and its value can be cal-
culated by combining Eqs. (6) and (4). If � �= 0, an equivalent 
Thomas-Fermi approximation can be used to approximate the den-
sity of the rotating condensate by considering (6), but with an 
effective trapping potential:

V eff
trap = V trap − 1

2
m�2r2, r2 = x2 + y2. (7)

The effective potential is the original potential diminished by the 
centrifugal term [43,32]. In the case of superfluid helium (V trap =
� = 0) the Thomas-Fermi density is constant nTF = n0.

2.3. Quantized vortices

Using the Madelung transformation, the wave function can be 
also presented as:

ψ(x, t) =√
n(x, t)eiS(x,t), (8)

with n the atomic density and S the phase. The mass density ρ
and the velocity v of the superfluid are defined as:

ρ(x, t) = m n(x, t) = m |ψ(x, t)|2, (9)

v(x, t) = h̄

m
∇ S(x, t) = h̄

ρ

ψ∗∇ψ − ψ∇ψ∗

2i
. (10)

For a flow of non-vanishing density (ρ �= 0), we infer from (10)
that the superfluid is irrotational:

∇ × v = h̄

m
∇ × ∇ S = 0. (11)

The lines along which ρ = 0 define topological defects, known as 
quantized vortices. It results from (10) that the velocity is singu-
lar at the vortex center. The Madelung transformation becomes 
singular when vortices are present in the flow. For a review of 
mathematical problems related to the Madelung transformation in 
presence of quantum vortices, see [44].

The circulation 
 along a closed regular path C surrounding a 
simply connected domain S is:


 =
∮
C

v · dl = h̄

m

∮
C

∇ S · dl. (12)

If S is a simply connected domain without vortices, using property 
(11) and Stokes’ theorem results in 
 = 0. If a vortex is present 
in the domain S , the curl of the velocity expressed by Eq. (11)
becomes a Dirac function and a phase-defect line starting from the 
vortex center exists. Since ψ must be a single-valued function, the 
integrated change in the phase must be a multiple of 2π , which 
implies that:


 = h̄

m
2πκ = h

m
κ, (13)

where κ is an integer representing the winding number of the 
vortex. It is important to note that vortex solutions are not sin-
gular solutions to the GP equation (1). Indeed, a straight-line vor-
tex solution �v can be obtained [42] using cylindrical coordinates 
(z, r, ϕ) as:

�v = √
n0 f (r) eiκϕ. (14)

The asymptotic behaviour of this solution near the origin (r = 0) is 
known [45]:



V. Kalt, G. Sadaka, I. Danaila et al. Computer Physics Communications 284 (2023) 108606
f (r) ∼ r|κ | +O(r|κ |+2), r → 0. (15)

The region near the vortex center where the density is varying in 
a significant way defines the vortex core. The radius of the vortex 
is of the order of the healing length ξ [42]:

ξ = h̄√
2mg|ψ |2 = 1√

8πas|ψ |2 . (16)

This description of quantized vortices offers a very simple prac-
tical way to extract vortices from a GP wave function field. Vortices 
are thus identified in the present post-processing as points in 2D 
or lines in 3D characterized by the following two properties:

• The density at the vortex center is 0.
• The circulation of the velocity on a closed path around the 

center is non zero.

2.4. Scaling

Numerical simulations are usually based on the non-dimensional 
form of the GP equation (1). By setting

x → x

aho
, u = ψ√

N a−d/2
ho

, (17)

where d = 2 or 3 is the dimension of the space and aho =
√

h̄
mω⊥

the harmonic oscillator length defined with respect to a reference 
trapping frequency ω⊥ = min(ωx, ωy), the dimensionless form of 
the GP equation becomes:

i
∂u

∂t
= −1

2
∇2u + Ctrapu + C g |u|2u − iC� At∇u. (18)

Coefficients in (18) are defined as:

C� =
(

�

ω⊥

)
, C g = 4π Nas

aho
(in 3D), C g = β (given in 2D).

(19)

The dimensionless effective potential corresponding to (7) and (3)
is:

V eff
trap = 1

2

(
axx2 + ay y2 + azz2 + a4(x2 + y2)2

)
, (20)

with dimensionless coefficients [32]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ax =
(

ωx

ω⊥

)2

−
(

�

ω⊥

)2

+ 2

(
U2

mω2⊥w2
2

)
,

ay =
(

ωy

ω⊥

)2

−
(

�

ω⊥

)2

+ 2

(
U2

mω2⊥w2
2

)
,

az =
(

ωz

ω⊥

)2

, a4 = 2

(
U4 a2

ho

mω2⊥w4
4

)
.

(21)

Non-dimensional forms (20) and (21) are used to obtain analytical 
forms for the Thomas-Fermi approximation (6):

ρTF = |u|2 =
(

ρ0 − 2V eff
trap

2C g

)
+

. (22)

Analytical expressions for ρ0 are presented in detail in [32] for 
trapping potentials of the form quartic ± quadratic. Note that the 
non-dimensional healing length (16) becomes in the Thomas-Fermi 
approximation:

ξ

aho
= 1√

2C g |u|2
=⇒ ξmin

aho
= 1√

ρ0
. (23)
4

3. Vortex identification in 2D BECs

The vortex identification process in 2D is decomposed into two 
parts: the localization of the vortex center and the computation 
of vortex characteristics. For the latter step, the vortex core ra-
dius (obtained through a fitting procedure) and the parameter of 
the Abrikosov vortex lattice (when identified) are computed. The 
initial data is the complex wave function u obtained from nu-
merical simulations and represented as a P1 (piece-wise linear) 
finite-element function on a triangular mesh T h. We illustrate the 
algorithms using numerical data reported in [32] for a fast rotating 
BEC with a quartic-minus-quadratic trapping potential. The initial 
data is shown in Fig. 1(a). A giant vortex is formed in the middle 
of the condensate, surrounded by a lattice of individual vortices. 
The purpose of the post-processing is to identify individual vor-
tices and compute their characteristics.

3.1. Vortex localization

The main difficulty introduced by this case is that the wave 
function is vanishing inside the giant vortex and also outside the 
condensate. These zones have to be removed before searching the 
zeros of the wave function corresponding to vortices. There are 
two possibilities depending on the availability of numerical param-
eters used in simulations.

• If parameters (21) of the trapping potential are known, we 
use formulae presented in [32] to compute ρ0 necessary to 
estimate the background density following the Thomas-Fermi 
approximation (22). For the case presented in this section the 
trapping potential (20) is of the form V eff

trap = 1
2

(
a2r2 + a4r4

)
and we use the following algorithm:

−− > compute ρ0⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Compute CS = 2C g,

• if a2 < 0 and a4 <

√
πa3

2

6CS

ρ0 = 1

4a4

⎡
⎣
(

6a2
4

π
CS

)2/3

− a2
2

⎤
⎦

• else

calculate the root η > 0 of:

f (η) = 4a4η
3 + 3a2η

2 − 6

π
(CS) = 0,

and then calculate

ρ0 = a2 R2 + a4 R4

−− > compute the maximum radius of the condensate

R+ =
⎛
⎜⎝−a2 +

√
a2

2 + 4ρ0a4

2a4

⎞
⎟⎠

1/2

.

(24)

At the end of this step, mesh triangles where ρTF < 0 are re-
moved.

• If the analytical expression of the Thomas-Fermi approxima-
tion is not known, we use to identify the border of the con-
densate an iso-value line of very low density ρmin. A typical 
value is ρmin = 5 · 10−5, but this threshold can be adjusted 
depending on the type of the scaling used in the numerical 
simulation. Triangles where ρ < ρmin are removed at the end 
of this step.
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Fig. 1. Illustration of vortex identification steps in 2D. Data from numerical simulation of a fast rotating BEC with a quartic-minus-quadratic trapping potential [32]. a) Initial 
density ρ , b) Thomas-Fermi density ρTF, c) identified vortex zones used to localize vortex centers and for the fitting with a Gaussian, d) mesh of the identified vortex lattice 
(blue points) on top of the initial data. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
We can proceed now with vortex center localisation. The lo-
cation of vortices can be obtained through a direct application of 
their defining properties mentioned at the end of Sect. 2.3. For 
each triangle T of the mesh, we search whether it contains a zero 
of the wave function or not. We denote by ur = �(u) and ui = �(u)

the real and imaginary part of the wave function, respectively. Let 
P0, P1, P2 be the vertices of the triangle. A necessary condition 
for the presence of a zero of a P1 complex function inside a trian-
gle is that both real and imaginary part must change sign inside 
the triangle:

min(ur(P0), ur(P1), ur(P2)) < 0, (25)

min(ui(P0), ui(P1), ui(P2)) < 0, (26)

max(ur(P0), ur(P1), ur(P2)) > 0, (27)

max(ui(P0), ui(P1), ui(P2)) > 0. (28)

The coordinates of the zero in barycentric coordinates are then 
computed as:

xv = det(u(P0),0, u(P2))

det(u(P0), u(P1), u(P2))
, (29)

yv = det(u(P0), u(P1),0)

det(u(P0), u(P1), u(P2))
. (30)

If a zero is found inside the triangle, we compute the circulation of 
the velocity on triangle sides to assess whether a vortex is present. 
After discretizing Eq. (12), we use the following formula to com-
pute circulation and corresponding winding number:
5

κ = 1

2π
�
(

log

(
u(P1)

u(P0)

)
+ log

(
u(P2)

u(P1)

)
+ log

(
u(P0)

u(P2)

))
,

(31)

where � denotes the imaginary part. A winding number κ = ±1
indicates the presence of a vortex inside the triangle at position 
(xv , yv). Divisions by zero in Eq. (31) are avoided in programs by 
first checking the value of the wave function on the vertices of the 
triangle. This enables the algorithm to also capture vortices passing 
exactly through a vertex of the mesh.

3.2. Vortex radius estimation

The difficulty of this step is the separation of the vortex density 
from the background (Thomas-Fermi) density. We use the decom-
position:

ρ = ρvρb (32)

with ρb is the background density corresponding to the shape of 
the condensate and ρv the vortex density varying between 0 and 
1. The computation of ρb is done using two methods.

• If the parameters defining the trapping potential are known, 
we use again the Thomas-Fermi approximation, as in Sect. 3.1. 
For this case (quadratic-minus-quartic potential) we approxi-
mate ρb = ρTF using (24).

• If the Thomas-Fermi expression cannot be reconstructed ana-
lytically, we assume the general formula:

ρb = ρfit
0 − 1 (

afit
x x2 + afit

y y2 + afit
4 (x2 + y2)2

)
, (33)
2
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and use a least-square procedure to find coefficients C ={
ρfit

0 ,afit
x ,afit

y ,afit
4

}
minimizing the functional

J (C) = 1

2
||ρ(x, y) − ρb(C, x, y)||2T htrunc

. (34)

Note that the minimization is performed on the domain T htrunc
representing the condensate after removing the regions corre-
sponding to vortex domains (where the density has a sharp de-
crease to zero). A minimization on the entire domain T h resulted 
in a poor approximation of the Thomas-Fermi density, when tested 
against analytical forms. Several algorithms defining T htrunc were 
tested and finally the most reliable and fast algorithm is based 
on removing individual vortex domains which are disks of radius 
0.1dmin, where dmin is the minimum distance between vortex cen-
ters. The minimization of the functional (34) is easily computed 
using the interface of FreeFem++ with the Ipopt library based on 
the interior point minimisation method [46].

The obtained background density ρb is plotted in Fig. 1(b). It is 
now possible to isolate vortex density and fit it with a Gaussian, 
following

ρb − ρ = ρb(1 − ρv) = A exp

[
−1

2

(x − x0)
2

rx
2

− 1

2

(y − y0)
2

ry
2

]
.

(35)

The amplitude A is used to define the vortex contrast (as in exper-
iments, [47]), since A/ρb(x0, y0) is the ratio between the “miss-
ing” column density at vortex center and the corresponding TF 
value (see also [18]). Only vortices with a contrast greater than 
0.3 are considered to compute core radii rv = (rx + ry)/2. Note 
that we used for the vortex fit (35) an anisotropic Gaussian. In 
practice rx ≈ ry . As the vortex center position has been already 
computed, the fit is simplified by setting x0 = xv , y0 = yv . When 
fitting the vortex center position during tests, we obtained the ex-
pected behaviour: x0 ≈ xv and y0 ≈ yv . The fit following Eq. (35)
is computed on individual vortex domains which are disks of ra-
dius 0.45dmin centered on vortex center, as shown in Fig. 1(c). The
Ipopt library is again used for the least-square fit, which ensures 
fast and reliable results.

The program also computes the characteristics of the vortex lat-
tice (vortex arrangement and vortex lattice parameter). A mesh is 
built using vortex points as vertices, as shown in Fig. 1(d), on the 
top of the original density plot. This representation is useful to 
better distinguish the arrangement of vortices in different types of 
vortex lattices (circular, triangular, squared) than commonly used 
plots of contours of density. For the case of dense Abrikosov lat-
tices (as shown in Sect. 6.1), we select vortices with 6 neighbours 
and compute the vortex lattice parameter as the average distance 
to these 6 neighbours.

4. Vortex identification in 3D

Vortex identification in 3D combines the localization algorithm 
described in Sect. 3.1 with the graph-based method suggested in 
[26]. The wave function is represented as a P1 finite element 
function on mesh elements which are now tetrahedrons. Vortex 
lines are described by a series of points identified as the inter-
section of vortex lines with faces of a mesh element. The algo-
rithm is illustrated in Fig. 2 using numerical data corresponding 
to a superfluid helium field with vortex rings [8]. A low-density 
isosurface of the initial data is presented in Fig. 2(a). An impor-
tant difference when studying vortex lines instead of points is 
the presence of reconnections (vortex line intersection) and closed 
loops.
6

The algorithm used for the localization of vortices in 2D is 
directly adapted to 3D by applying Eqs. (25), (29) and (31) on 
the faces of each tetrahedron. The result is the detection of faces 
crossed by vortex lines. The position of the zero density point in-
side those faces is computed and stored. Tetrahedrons crossed by 
vortex lines are plotted in Fig. 2(b). Following the method sug-
gested in [26], a graph is then built by linking the points belonging 
to a same mesh element and using the fact that a given point is 
inside two different tetrahedrons. The connectivity c of the graph 
allows an easy separation of vortex lines through the following al-
gorithm:

1. Choose a point of connectivity c = 1 and follow the graph 
while keeping an ordered list of visited points. Stop when 
reaching a point where c = 1 (end of a line) or c > 2 (recon-
nection point). Remove all visited points from the graph except 
if the end point is a reconnection point; in this case remove 
the link to the penultimate point and actualize connectivity. 
Repeat this step until there are no points with c = 1 left. The 
ordered lists of points represent vortex lines.

2. The only remaining lines are now loops. Start by removing the 
ones that reconnect through the same process as before, ex-
cepting that we start and stop at points where c > 2.

3. Only points with c = 2 remain. Starting from one such point 
and stopping when reaching the same point ends the identifi-
cation of a vortex loop. All lines have been extracted from the 
graph when all points have been extracted.

As the points are constrained to be on faces of tetrahedrons, the 
vortex line is not smooth, as illustrated in Fig. 2(c). Two possibil-
ities exist to smooth the vortex line. For a precise study of vortex 
lines, it is necessary to locate more accurately its points through 
the interpolation of the wave function and a local minimization 
of the density to identify its zero. This local minimization can be 
done using a Newton method [24] or by combining a pseudo-
vorticity method and a gradient descent minimization [26]. The 
drawback of these methods is that they are time-consuming and 
directly related to the spectral representation of the solution. We 
privileged a second possibility to smooth the vortex line, using a 
simple five-point moving average along the line. This methodol-
ogy proved to be very fast and sufficiently precise to identify 3D 
vortex lines. Since this is a low-cost methodology, the results thus 
obtained could be eventually used as initial (guess) data in more 
complex procedures, as those suggested in [24,26], to identify vor-
tex lines with spectral accuracy.

For a line l, with points li, 1 ≤ i ≤ n, we compute new points 
mi , as follows:

mi = 0.8

5
(li−2 + li−1 + li + li+1 + li+2) + 0.2li . (36)

The ends of the line are kept fixed and a three point window 
is used for the second and penultimate points. The process is 
repeated, with the number of iterations being an adjustable pa-
rameter. In practice, 10 iterations are usually enough. To obtain 
a smoother result, it is possible to use a linear interpolation on 
line segments to increase the number of points before applying 
the moving average. Figure 2(c) shows a comparison between the 
initial line and the smoothed result for one of the vortex lines (lo-
cated at the bottom left of the initial solution). The y axis of the 
figure is enlarged for the clarity of the visualisation. All lines iden-
tified in the original field are plotted in Fig. 2(d).

An optional quantity that can be computed is the curvature γ
of the vortex line. At a given point mi , we estimate γ (mi) = α/�s, 
where �s is the arc-length variation between points mi−1 and 
mi+1 and α is the angle between line segments linking mi−1 to 
mi and mi to mi+1.
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Fig. 2. Illustration of the vortex identification algorithm in 3D. Test case with vortex rings in superfluid helium [8] simulated inside a cubic domain (spectral method). 
a) Isosurface of low density ρ , b) tetrahedrons crossed by vortex lines, c) example of extracted vortex line (black) and smoothed vortex line (red), d) final vortex lines 
reconstructed in the full domain.
5. Vortex identification in experimental images

The toolbox distributed with this paper can be also used to 
analyse experimental images of BEC with vortices. Such images 
are obtained by switching-off the magnetic trap and imaging the 
absorption of a resonant laser beam along the vertical axis. The 
contrast in experimental pictures thus represents the atomic den-
sity integrated along the z-axis and vortices are visible as very 
dark regular spots (see Fig. 3). Since the information concerning 
the phase of the wave function is not available, the algorithms 
presented in Sect. 3 have to be adapted to analyse experimental 
images.

We illustrate the adapted algorithm by extracting vortex char-
acteristics from an experimental image presented in [47]. It corre-
sponds to a slowly rotating atomic BEC in an harmonic trap. The 
original image, shown in Fig. 3(a), is transformed in the pgm for-
mat and then loaded in FreeFem++ as a rectangular array of grey 
values between 0 (dark) and 1 (white). A triangular finite-element 
mesh is then constructed from the rectangular grid and the values 
of grey (representing the density contrast) are represented as a P1 
(piece-wise linear) function on this mesh.

The first step of the algorithm consists in separating vortex 
regions from the rest of the domain. We define a new variable 
ρiso = 1ρ>ciso − 1ρ≤ciso , where 1 is the characteristic (indicator) 
function and ciso is an adjustable parameter. If it is necessary to re-
move noisy artefacts on the border of the condensate, ρiso can be 
smoothed using algorithms inspired from image processing tech-
niques. We implemented a smoothing algorithm that balances the 
accuracy of the fit of the contour and the preservation of the 
length of the contour, but any other image smoothing algorithm 
7

can be tested. Figure 3(b) shows that ρiso separates the mesh into 
three subdomains that can be identified as the condensate, the 
vortices domain (holes) and the exterior of the condensate. If some 
vortices are not correctly separated from the background contrast, 
the value ciso can be adjusted by trials and the above algorithm 
repeated.

For each vortex region, the vortex center (xv , yv) is computed 
as the minimum of the density in the region. Following this point, 
all the information needed to apply the algorithms presented in 
Sect. 3.2 are available.

• A mesh T htrunc is created by removing circles of radius 0.1dmin
around each vortex point, where dmin is the minimum distance 
between vortices.

• The background density ρb is then estimated following Eqs. 
(33) and (34). This density is plotted in Fig. 3(c).

• The vortex density ρv , presented in Fig. 3(d), is fitted with the 
Gaussian (35) to estimate vortex radius rv . To obtain a better 
estimation of the position of the vortex center, x0 and y0 are 
also parameters of the fit (which was not the case for the fit of 
2D numerical data). The mesh of identified vortices is plotted 
in Fig. 3(e).

6. Examples and benchmarks provided with the toolbox

Several other examples and benchmarks used to validate our 
numerical codes are provided with the toolbox. To reduce the size 
of the files distributed with the 3D code, solutions have been trun-
cated to remove tetrahedrons where ρ > ρthreshold , with ρthreshold
being adapted to each simulation to ensure that a high density 
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Fig. 3. Illustration of vortex identification steps in experimental images. Case of a vortex lattice in a slowly rotating BEC [47]. a) Experimental image of atomic density ρ , 
b) region separated using a density contour ρiso , c) fitted background (Thomas-Fermi) density ρTF, d) vortex density ρv , e) mesh of identified vortices (blue points) and 
condensate border.

Table 1
Computational (CPU) time and number of mesh elements for different test cases. For 2D data, the indicated time corresponds to the computation of ρb using numerical 
parameters. The computational time when using a fit to estimate ρb is indicated in parenthesis. For 3D cases, the number of tetrahedrons crossed by a vortex line is indicated 
in parenthesis.

Test case Figure CPU time (s) Number of triangles

2D data Quartic - quadratic potential 1 2.5 (14.7) 32258
Dense Abrikosov lattice 4 22.6 (79.6) 130050

3D data Vortex rings 2 0.29 16574 (4368)
Bose-Einstein condensate 5 1.4 267963 (84562)
Vortex knot 6 0.5 95004 (3479)
k−3 Kelvin wave 7 1.08 273733 (912)
k−6 Kelvin wave 7 1.09 273673 (834)
1283 quantum turbulence 8 3.9 101189 (37756)
2563 quantum turbulence 8 774.7 99488250 (345541)

experimental 
images

Small Abrikosov lattice 3 13.82 91574
Dense Abrikosov lattice 9 27.66 114720
area is still surrounding each vortex. Table 1 presents the com-
putational (CPU) time and the number of mesh elements for the 
different test cases. The first test cases in each category correspond 
to examples used to explain algorithms in Sects. 3, 4 and 5.

6.1. Dense 2D Abrikosov vortex lattice

This case corresponds to a 2D Abrikosov lattice in a fast rotating 
BEC. The wave function field was obtained using a spectral solver 
[48] for the scaled Gross-Pitaevskii equation (18) with parameters: 
C g = 1000, C� = 0.95, ax = ay = 1. The background density ρb is 
obtained by computing the Thomas-Fermi density directly from 
simulation parameters. The initial data is shown in Fig. 4(a) and 
the identified vortices are plotted in Fig. 4(b). Characteristics of 
the Abrikosov lattice are plotted in next panels: the vortex radius 
rv as a function of the distance to the condensate center r/RTF in 
Fig. 4(c) and the inter-vortex distance sv in Fig. 4(d).
8

6.2. Vortices in 3D Bose-Einstein condensates

To test the toolbox on an unstructured mesh, we simulated a 
3D BEC with the GP finite-element toolbox distributed in [32]. A 
cut of the initial data with 12 vortices is shown in Fig. 5(a). The 
extracted lines are plotted in Fig. 5(b).

6.3. 3D vortex knot

For a more quantitative assessment of the results provided by 
the toolbox, we tested the programs for a case with known an-
alytical description of the vortex line. This is the vortex knot 
benchmark presented in [24]. The vortex line is defined as s(σ ) =
(x−1

p (sx(σ )), y−1
p (sy(σ )), z−1

p (sz(σ ))) with:

sx(σ ) = [R0 + R1 cos(qσ)] cos(pσ), (37)

sy(σ ) = [R0 + R1 cos(qσ)] sin(pσ), (38)

sz(σ ) = R1 sin(qσ). (39)
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Fig. 4. Illustration of the vortex identification in 2D for a dense Abrikosov lattice in fast rotating BEC. Wave function field obtained with a spectral GP code [48]. a) Initial 
density ρ , b) mesh of identified vortices, c) vortex radius rv as a function of the normalized distance from the vortex to the center of the condensate r/RTF, d) inter-vortex 
distance sv .

Fig. 5. Illustration of the vortex line identification in 3D for a rotating BEC. Data obtained on an unstructured mesh using a finite-element solver [32]. a) Cut of the initial 
density ρ , b) extracted vortex lines.
Functions xp , yp and zp are introduced during the computa-
tion of the wave function to ensure periodic boundary condi-
tions:

xp = − L

π
cos

(π

L
x
)

, (40)

yp = − L

π
cos

(π

L
y
)

, (41)

zp = − L

2π
cos

(
2π

L
z

)
. (42)
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A comparison between the vortex line described analytically by 
Eq. (37) and the result obtained with the toolbox is shown in 
Fig. 6(a). The wave function was computed with a 1283 grid, in 
a cubic domain of side 2π . The knot parameters are: R0 = 8ξ , 
r1 = ξ/2, p = 2 and q = 5 with ξ = 0.5�x. The curvature γ of 
the vortex line was computed as an additional test and compared 
in Fig. 6(b) to analytical values. A fairly good approximation is ob-
served. To reach the precision obtained in [24], a higher resolution 
and a better smoothing method are needed (with the drawback of 
considerably increasing the computational time). The script used 
to create the initial wave function for this case is included in the 
toolbox.
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Fig. 6. Illustration of the vortex line identification in 3D for a vortex knot. Test case suggested by [24]. a) Vortex line (in red) inside the mesh elements identified of circulation 
κ = 1, b) comparison of the vortex line curvature with analytical values.

Fig. 7. Kelvin wave spectrum for a vortex line scaling as k−3 (a) and k−6 (b). Test case suggested by [49]. Numerical spectrum in black and theoretical spectrum in red. (c) 
Vortex line and density iso-surface for the k−3 case, (d) vortex coordinates xv (z) and yv (z) for the same case.
6.4. Kelvin waves

Another validation against analytical forms of vortex lines con-
sidered Kelvin waves with a k−3 and k−6 energy spectrum. Os-
cillations of the vortex line were generated following the method 
suggested in [49]. A Padé approximation of the vortex profile [50]
was used in each xy plane. The vortex center in each plane was 
placed along a line (X(z), Y (z), z) defined by:

X(z) + iY (z) = F−1
(√

nth(k)eiφ(k)
)

, (43)
10
where nth(k) is the imposed spectrum (here k−3 or k−6) and φ(k)

is randomly distributed in [0, 2π [. F−1 denotes the inverse Fourier 
transform.

To compute the spectrum, we start by remeshing the line on 
the interval [0, Lz] where Lz is the simulation box size. The line is 
expressed as L(z) = (lx(z), l y(z), z) and the spectrum is:

nkw = |R̂(k)|2, (44)

where r(z) = lx(z) + ily(z) and R̂ is the Fourier transform of r.
Figure 7 shows that the numerical spectrum is close to the im-
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Fig. 8. Illustration of the vortex identification in 3D for quantum turbulence in superfluid helium. Spectral numerical simulation of the GP equation [8]. Tetrahedrons with 
non-zero circulation on the left and identified vortex lines on the right for two resolutions: 1283 (a,b) and 2563 (c,d).
posed power law nth(k) in both cases. The script used to create 
the initial wave function for this case is included in the toolbox.

6.5. 3D quantum turbulence

The final test case for the 3D algorithm considered a quan-
tum turbulence field with a large number of vortices. The wave 
function field was obtained from a GP spectral simulation with 
an initial condition containing Taylor-Green vortices [8]. Results 
are presented in Fig. 8: 155 vortex lines were identified from a 
1283-grid simulation and 640 lines were found in a 2563-grid sim-
ulation. The smaller vortex loops have a radius of the order of the 
mesh resolution. Vortex identification is fast, as shown by com-
putational times presented in Table 1, despite the large number of 
tetrahedrons involved in the process. Villois et al. [24] reported, for 
a similar test case, a CPU time of 6 hours on a 64 core cluster us-
ing MPI. As our method is local, higher resolutions can be treated 
by separating the simulation in small subdomains that can be anal-
ysed separately. The vortex lines can then be linked together before 
the smoothing.

6.6. Experimental dense Abrikosov lattice image

To complete the test presented in Sect. 5, we considered the 
more challenging test of an experimental image with a dense 
Abrikosov vortex lattice reported by [47]. The result is shown in 
Fig. 9.

Vortices on the side of the condensate are not identified as they 
are in a very low contrast regions. The vortex lattice properties 
11
were also computed. We notice in Fig. 9(d) that the vortex radius 
rv increases for vortices away from the BEC center, which is the 
expected behaviour because of the low local atomic density. As the 
length scale information is not available with images, all quantities 
are expressed in pixel size.

7. Description of the programs

In this section, we first describe the architecture of the pro-
grams and the organisation of the provided files. Then we describe 
the input parameters and the structure of the output files for the 
different codes.

7.1. Program architecture

The Postproc_toolbox directory is organized around three 
main subdirectories, postproc_data_2D, postproc_data_3D
and postproc_image_2D, corresponding to the three algo-
rithms described above: the case of 2D simulation data, that of 
3D simulation data and the case of experimental images. Each 
of these subdirectories contains a file: FFEM_postproc_$case.edp
which is the main FreeFem++ script file and a folder A_macro
containing macros used in main code. For example, to run the 
vortex identification in 3D simulation data, the user can use the 
command FreeFem++ FFEM_postproc_data_3D.edp. Ini-
tial data fields or images for the examples presented in this paper 
are stored in the INIT folder.

The obtained solutions are saved in the folder dircase. De-
pending on the output format selected by the user, data files are 
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Fig. 9. Illustration of the vortex identification in an experimental image with dense Abrikosov vortex lattice [47]. a) Initial image, b) background density ρb , c) mesh of 
identified vortex points and Thomas-Fermi border, d) vortex radius rv as a function of the distance to the center of the BEC. In panel (c), only vortices with high enough 
density contrast (and thus fitted with a Gaussian) are represented by blue circles.
generated in specific folders for visualization with Tecplot, Par-
aview or Gnuplot. We also provide in the folder Figures ready-
made layouts for Tecplot. The user can thus obtain the figures from 
this paper using newly generated data. More details about the out-
put structure are given in Sect. 7.4.

Before running the main scripts, it could be useful for the 
reader to get familiar with the initial data fields. This will help 
with the use of the toolbox in different programming frameworks. 
For this purpose, we included some auxiliary (optional) scripts that 
could be used to generate again data files for the examples pre-
sented in this paper (folder extra_codes_for_examples) or 
to have an example of how to link an external solver (GP or simi-
lar) to the toolbox (folder data_example). More in detail:

1. The directory extra_codes_for_examples contains codes 
generating the wave function and computing vortex line prop-
erties for the examples described in Sects. 6.2 to 6.4:
• generate_vortex_knot.edp: generates the vortex knot wave 
function (Sect. 6.3).
• compute_vortex_knot_curvature.edp: computes numerical and 
theoretical curvatures for the vortex knot and compares them.
• generate_sphere_mesh.edp: generates a spherical mesh for the 
BEC example with 12 vortices (Sect. 6.2).
• generate_Kelvin_wave.edp: generates the wave function of a 
vortex line deformed by a Kelvin wave (Sect. 6.4).
• compute_Kelvin_spectrum.edp: computes the Kelvin wave 
spectrum of the vortex line identified in the field file gen-
erated by the previous script.

2. The directory data_example contains example codes show-
ing how to save numerical data and parameters in the format 
used in the toolbox:
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• data_example_2D.f90: Fortran code computing the wave 
function of a 2D BEC with three vortices.
• data_example_3D.f90: Fortran code computing the wave 
function of a 3D BEC with a central vortex line.
• convert_data_2D.edp: FreeFem++ script converting the data 
created by the 2D Fortran code to the FreeFem++ format used 
in the toolbox.
• convert_data_3D.edp: FreeFem++ script converting the data 
created by the 3D Fortran code to the FreeFem++ format used 
in the toolbox.

Going back to main scripts, the complete architecture of the
Postproc_toolbox main directory is the following:

1. FFEM_postproc_generate_files.edp is a FreeFem++ script used to 
automatically run preliminary or maintenance operations and 
generate data and mesh used in the presented examples. It is 
useful to run this script before testing different examples. A 
clean option was also added to help managing data files and 
results of compilation.

2. The directory Common_Macros contains two files:
• Macro_common.idp: macros used to create directories and 
save the results,

3. The directory postproc_data_2D contains codes dedicated 
to vortex identification in 2D numerical data with the algo-
rithms presented in Sect. 3:
• FFEM_postproc_data_2D.edp: the main FreeFem++ script.
• INIT: directory containing data and parameter files for the 
Abrikosov lattice and quartic potential examples described in 
Sects. 3 and 6.1.
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• Figures: directory containing Tecplot layouts used to re-
plot the figures shown in this article. The main code must be 
run with the associated example before opening the layout to 
replot the figure.
• A_macro: directory containing macros used for the vortex 
identification in 2D complex data.

4. The directory postproc_data_3D contains codes dedicated 
to vortex identification in 3D numerical data with the algo-
rithms presented in Sect. 4:
• FFEM_postproc_data_3D.edp: the main FreeFem++ script.
• FFEM_files_for_Kelvin_wave_vortex_knot_lay.edp: script used 
to generate the files necessary to replot the figures in Sects. 6.3
and 6.4.
• INIT: directory containing the data and parameter files for 
the examples presented in Sects. 4, 6.2 and 6.5: vortex rings in 
superfluid helium, Bose-Einstein condensate and quantum tur-
bulence. The scripts in the extra_codes_for_examples
directory must be used to obtain the initial data for the exam-
ples described in Sects. 6.3 and 6.4.
• Figures: directory containing Tecplot layouts used to re-
plot the figures shown in this article. The main code must 
be run with the associated example before opening the lay-
out to replot the figure. To obtain the curvature and spectrum 
shown in Figs. 6 and 7, it is necessary to use the scripts in 
the extra_codes_for_examples directory before open-
ing the layout.
• A_macro: directory containing macros used for the vortex 
identification in 3D complex data.

5. The directory postproc_image_2D contains codes dedi-
cated to vortex identification in 2D experimental images with 
the algorithms presented in Sect. 5:
• FFEM_postproc_image_2D.edp: the main FreeFem++ script.
• INIT: directory containing the data files for the vortex lat-
tice presented in Sects. 5 and 6.6.
• Figures: directory containing Tecplot layouts used to re-
plot the figures shown in this article. The main code must be 
run with the associated example before opening the layout to 
replot the figure.
• A_macro: directory containing macros used for the vortex 
identification in 2D experimental images.

7.2. Macros and functions

The different macros and functions used in the toolbox are:

1. In postproc_data_2D, the directory A_macro contains:
• M_bec_compute_TF.edp: macro computing the Thomas-Fermi 
density ρTF and condensate radius RTF.
• M_bec_fit_gaussian.edp: macro using Ipopt to fit the vortex 
density ρv with a Gaussian function (see Eq. (35)).
• M_bec_fit_TF.edp: macro using Ipopt to fit the Thomas-Fermi 
density (see Eq. (34)).
• M_bec_lattice_stats.edp: macro computing characteristics of 
the vortex lattice (radius and inter-vortex spacing as a function 
of the distance to the center of the BEC).
• M_bec_read_data.edp: macro used to read the initial data 
(wave function field) and parameter files.
• M_bec_sort_save_results.edp: macro used to save the results.
• M_bec_vortex_lattice.edp: macro building a mesh correspond-
ing to the vortex lattice.
• M_bec_vortex_regions.edp: macro computing the vortex posi-
tion (Eqs. (29) and (31)) and building the mesh T htrunc.

2. In postproc_data_3D, the directory A_macro contains:
• M_bec_build_line.edp: macro building a vortex line following 
the method described in Sect. 4.
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• M_bec_compute_curvature.edp: macro computing the curva-
ture of a vortex line.
• M_bec_compute_TF.edp: macro computing the Thomas-Fermi 
density ρTF and condensate radius RTF.
• M_bec_read_data.edp: macro used to read the initial data 
(wave function field) and parameter files.
• M_bec_smooth_line.edp: macro smoothing a vortex line using 
a 5-point moving average (see Eq. (36)).

3. In postproc_image_2D, the directory A_macro contains:
• M_bec_fit_gaussian.edp: macro using Ipopt to fit the vortex 
density ρv with a Gaussian function (see Eq. (35)).
• M_bec_fit_TF.edp: macro using Ipopt to fit the Thomas-Fermi 
density (see Eq. (34)).
• M_bec_lattice_stats.edp: macro computing characteristics of 
the vortex lattice (radius and inter-vortex spacing as a function 
of the distance to the center of the BEC).
• M_bec_reduceres_smooth.edp: macro used to smooth and 
lower the resolution of the initial image.
• M_bec_regularize_isoline.edp: macro used to smooth the re-
gion borders in ρiso .
• M_bec_sort_save_results.edp: macro used to save the results.
• M_bec_vortex_lattice.edp: macro building a mesh correspond-
ing to the vortex lattice.
• M_bec_vortex_regions.edp: macro computing the vortex posi-
tion and building the mesh T htrunc.

4. The vortextools.cpp file is included in the FreeFem-sources/
plugin/sec directory for FreeFem++ versions above 4.12 and 
contains functions used by the previously described scripts 
and macros:
• smoothCurve: function smoothing a vortex line using a 5-
point moving average (see Eq. (36)).
• uZero: function computing vortices in a 3D complex field 
(see Eqs. (29) and (31)); it returns a P0 function of value 1 if 
the tetrahedron is crossed by a vortex line and 0 otherwise.
• uZero2D: function computing vortices in a 2D complex field 
(see Eqs. (29) and (31)), returns a P0 function of value 1 if the 
tetrahedron is crossed by a vortex line and 0 otherwise, an 
array containing vortex positions and dmin.
• ZeroLines: function used to identify the vortex lines through 
the graph described in Sect. 4.
• curvatureL: function computing the curvature of a curve de-
scribed by a line 1D-mesh.
• abscisses: function computing the arc-length along a curve.
• interpol: function using linear interpolation to transform data 
from an irregular discretization to a uniform one.

7.3. Input parameters

Parameters for the identification process must be adapted in 
the main code file. They differ depending on the type of data and 
the space dimension (2D/3D).
(1) In the file FFEM_postproc_data_2D.edp, the parameters 
are:

• paramread: defines the method to compute the background 
density: computes ρTF from the Gross-Pitaevskii parameters 
(true) or uses the fit presented in Eq. (34) (false). If true, 
a parameter file must be provided.

• displayplot: controls the output information to plot. Possible 
values from 0 (no plots), to 2 (plots data for all vortices during 
the fit).

• save: if true, data used in the Tecplot layouts will be saved.
• iwait: a Boolean indicating if the code must wait for user input 

when a plot is shown (true) or if it can continue (false).
• hole: a Boolean indicating whether the condensate has a cen-

tral hole as in the quartic-quadratic potential test case.
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• fcase: the name of the input file.
• dirInput: the name of the directory where the input file is 

stored.
• dircase: the name of the directory where the results will be 

stored.

(2) In the file FFEM_postproc_data_3D.edp, the parame-
ters are:

• BEC: if true, the tetrahedrons outside the Thomas-Fermi zone 
will be removed. In this case, a parameter file must be given.

• displayplot: controls the output information to plot. Possible 
values from 0 (no plots), to 2 (plots data for all vortices during 
the fit).

• save: if true, data will be saved in the Tecplot folder.
• iwait: a Boolean indicating if the code must wait for user input 

when a plot is shown (true) or if it can continue (false).
• curv: the vortex line curvature is computed if true.
• npadd: the number of points to add on each segment of the 

line before smoothing. The minimum is 1 (the extremity of the 
segment).

• smooth: a Boolean indicating whether to smooth the line or 
not.

• nsmooth: the number of smoothing iterations.
• fcase: the name of the input file.
• dirInput: the name of the directory where the input file is 

stored.
• dircase: the name of the directory where the results will be 

stored.

(3) In the file FFEM_postproc_image.edp, the parameters 
are:

• displayplot: controls the output information to plot. Possible 
values from 0 (no plots), to 2 (plots data for all vortices during 
the fit).

• save: if true, data will be saved in the Tecplot folder.
• iwait: a Boolean indicating if the code must wait for user input 

when a plot is shown (true) or if it can continue (false).
• reduceres: a Boolean, the image resolution is reduced when 

the value is true.
• fcase: the name of the input file.
• dirInput: the name of the directory where the input file is 

stored.
• dircase: the name of the directory where the results will be 

stored.
• cutisoval: value ciso used when separating the regions.
• cutisoval2: a second value ciso,2 used when separating the re-

gions.

7.4. Outputs

When a computation starts, the OUTPUT_$case directory is 
created. It contains five folders. The RUNPARAM directory contains 
a copy of the code and data files, allowing an easy identification 
of each case and preparing an eventual rerun of the same case. 
The other folders contain different output format files of the com-
puted solution, to be visualised with Tecplot, Paraview, Gnuplot or 
FreeFem++. The content of those subfolders depends on the case 
and on the computation parameters:

• For 2D data, the Gnuplot folder contains multiple files. Com-
puted quantities are stored in the vortex_coord_$case.
dat file. The columns represent, in order: the vortex number, 
the vortex coordinates xv and yv , the radius, the distance from 
the center of the BEC and a boolean indicating if Ipopt has 
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converged (value 0) or not (value 1) when fitting the vortex. 
The sorted_radius.dat and stats_lattice.dat con-
tain respectively the core radius and the inter-vortex distance 
(second column) sorted by increasing distance to the center 
of the condensate (first column). The Tecplot folder con-
tains files for the initial density (rhoinit.dat), the back-
ground density (rhoTF.dat), the vortex wave function on 
the whole domain (rhov.dat) and only on vortex regions 
(rhovVortex.dat), as well as meshes for the Thomas-Fermi 
border of the condensate (TF_meshL.dat) and the estimated 
vortex points (vortex_mesh.dat).

• For 3D data: The smoothed vortex lines are stored as .vtk
files in the Paraview folder, as FreeFem++ .meshb files in the
meshL folder and as .dat files in the Gnuplot folder (as 
a succession of point coordinates x, y, z). The file names are
line_ followed by fcase and the line number. Files start-
ing by zeroline in the Gnuplot and Paraview folders 
are the vortex lines before smoothing. The Tecplot folder 
contains the initial density (rho_init.dat), a mesh of the 
tetrahedrons crossed by vortex lines (vortex_mesh.dat) 
and if it is computed, the Thomas-Fermi density (rho_TF.
dat). If the curvature is computed, it is saved in the Gnuplot 
folder as curv_ followed by the line number.

• For experimental images, the Gnuplot and Tecplot fold-
ers are almost the same as in the 2D data case. The only 
difference is that there are two meshes built from vortex 
points: the first one uses the points estimated from the vortex 
regions (vortex_mesh_estimated.dat) and the second 
one uses vortex positions obtained from the fit with a Gaus-
sian (vortex_mesh_fitted.dat).

8. Summary and conclusions

The main advantage of the toolbox distributed with this paper 
is its ability to give fast and accurate results for vortex identifica-
tion in different configurations: 2D, 3D and experimental images. 
While more precise numerical methods for the identification of 
vortices could be set by combining local minimization and Fourier 
interpolation [24,25], we showed that the computation of the ze-
ros of a P1 finite element function is a reliable method to obtain 
a good degree of precision while keeping the computational cost 
low. This approach is well suited for fields with a large number 
of vortices, as obtained in high resolution simulation of quantum 
turbulence, where local minimization would be too costly. Another 
advantage of the toolbox is to be adaptable to any computational 
framework (finite elements, spectral, finite differences) providing 
the wave function field. Examples how to interface the toolbox 
with other software are also provided.

The toolbox was created with FreeFem++, a free and open-
source software for the resolution of partial differential equations 
and the manipulation of finite elements. The main steps of the 
method are (i) the search of the zeros of the wave function (ii) the 
delimitation of the vortex region (in 2D) or the vortex line (in 3D) 
(iii) the computation of vortex characteristics. The numerical code 
was validated against a wide range of test cases available in the 
literature for both 2D and 3D configurations.

To facilitate its use, the toolbox is provided with separate fold-
ers containing all the necessary files (parameters, restart files) to 
run all the cases described in the paper. Ready-made scripts and 
layouts allow the user to generate the figures presented in this pa-
per with newly generated data after running the programs. As a 
consequence, the present toolbox can be easily tested and modi-
fied for the computation of other diagnostics or the identification 
of vortices in other types of systems (e.g. vortices in superconduc-
tors described by a Ginzburg-Landau wave function field).
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