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MAGNETIC EQUATIONS WITH FreeFem++:

THE GRAD-SHAFRANOV EQUATION & THE CURRENT HOLE
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Lise-Marie Imbert-Gérard2, Georges Sadaka4 and Remy Sart5

Abstract. FreeFem++ [11] is a software for the numerical solution of partial di�erential equations.
It is based on �nite element method. The FreeFem++ platform aims at facilitating teaching and basic
research through prototyping. For the moment this platform is restricted to the numerical simulations
of problems which admit a variational formulation. Our goal in this work is to evaluate the FreeFem++

tool on basic magnetic equations arising in Fusion Plasma in the context of the ITER project.
First we consider the Grad-Shafranov equation, which is derived from the static ideal MHD equations

assuming axisymetry. Some of the properties of the equation and its analytical solutions are discussed.
Second we discretize a reduced resistive MHD model which admits solutions of the Grad-Shafranov
equation as stationary solutions. Then the physical stability of these stationary solutions is investigated
through numerical experiments and the numerical stability of the algorithm is discussed.

1. Introduction

FreeFem++ is a software1 which solves partial di�erential equations numerically with the �nite element
method. The overall goal of this study is to evaluate the FreeFem++ platform on basic magnetic equations
arising in Fusion Plasma.

1.1. The physical context

The general context is the ITER2 project about thermonuclear fusion in a Tokamak. A nuclear fusion is the
process by which multiple nuclei join together to form a heavier nucleus. In order to overcome the electrostatic
repulsion between positive ions and to avoid contact between the hot plasma and the material walls, the
plasma needs to be con�ned, for example by magnetic �elds. The magnetic con�nement structure of a high
temperature (107− 108 mega Kelvin) plasma that we consider in this work is denominated Tokamak, acronym
of TOroidalnaya KAmera i MAgnitnaya Katushka from the Russian that means toroidal camera with magnetic
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(a) The toroidal vacuum vessel (outer D-shaped
curve) and plasma (shown shaded). R is the radial
and Z the vertical coordinates.
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(b) The elliptical curve denotes the plasma boundary, whose center is at R =

R0, Z = 0. The parameter b describes the elongation of the plasma and the
triangularity λ describes the departure of the plasma boundary from a simple
ellipse. (Values of b = 1 and λ = 0 correspond to a circular plasma boundary).
The poloidal shaded domain Ω ⊂ R2 will be the computational domain.

Figure 1: Schematic cross-section of a tokamak and de�nition of various coordinates and parameters. To a good
approximation, the tokamak can be regarded as axisymetric about the Z-axis, and so the plasma boundary can
be described by its cross-sectional shape at one particular toroidal location.

coils (as illustrated schematically in Figure 1a). This design is the one that will be used in ITER. At these
temperatures the highly ionized plasma is an excellent electrical conductor, and can be con�ned and shaped
by strong magnetic �elds. The main problems to deal with in plasma control are current, position and shape
control. Some of these problems have already been subject to thorough research, although it is still possible to
improve the behaviour and robustness in the presence of non-linearities.

1.2. The model

In this work, the plasma is described by the mono-�uid ideal magnetohydrodynamics equations under the
assumption of axisymetry. Plasma �oats in a somewhat D-shaped con�guration surrounded by a conducting
wall. Between the hot plasma and the wall is a vacuum such that the plasma has to be kept in place with
external magnetic �elds. Superconducting magnets produce a large toroidal (i.e. in the φ-direction) magnetic
�eld that, combined with poloidal (i.e. in the cross-sectional plane) electric currents inside the plasma, produce
an inward Lorentz force counteracting the pressure force. An additional toroidal electric current produces
a poloidal magnetic �eld also constituting an inward Lorentz force. The position and shape of the plasma
boundary can be described in terms of a set of geometrical parameters such as vertical position and elongation,
illustrated in Figure 1b in which a cross-section of an axisymmetric toroidal tokamak is shown. The axis of
symmetry is the Z-axis and the ignorable angle is φ. R is a radial coordinate, R0 and a are called the major
axis and minor axis of the tokamak, e = b/a is the ellipticity, ε = a/R0 is the inverse aspect ratio and λ the
triangularity. Supposing invariance along the toroidal direction φ, the dimensionless non-linear equations write
in the form given in [4�6]


∂tψ = (1 + εx)[ψ,ϕ] + η(J − Jc),
∂tω = 2εω ∂ϕ∂y + (1 + εx)[ω, ϕ] + 1

1+εx [ψ, J ] + ν∆⊥ω,
J = ∆∗ψ,
ω = ∆⊥ϕ.
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The unknowns are the magnetic �ux ψ (that is B = ∇× ψ is the magnetic �eld), the velocity potential ϕ, the
toroidal current density J and the vorticity ω. The Poisson brackets are denoted [·, ·] with properties

[a, b] =
∂a

∂x

∂b

∂y
−∂a
∂y

∂b

∂x
= ∇·(a(∇×b)) = −[b, a], [a, [b, c]] = −[b, [c, a]]−[c, [a, b]] and [ab, c] = a[b, c]+b[a, c].

The operator ∆∗ is the Grad-Shafranov operator de�ned in section 2. The operator ∆⊥ is the laplacian restricted
to the poloidal section. The parameter η stands for the resistivity, ν for the viscosity. We implicitly assume a
uniform density. The source term Jc represents a non-ohmic driven current density that sets a constant pro�le
likely to be perturbed with �uctuations. It is natural to impose homogeneous Dirichlet boundary conditions on
the exterior frontier

u|∂Ω = ϕ|∂Ω = ψ|∂Ω = 0. (1)

1.3. Outline

Non-linear MHD simulations typically start from an equilibrium: we study in section 2 the stationary solution
of the so-called Grad-Shafranov equation

−∆∗ψ = Jc, ψ|∂Ω = 0. (2)

We present �rst how to compute the solution with FreeFem++ in the case of the Soloviev equilibrium which
corresponds to a Jc independent of ψ. Then we generalize the algorithm to the case of a polynomial (in ψ) non
ohmic current. Then in section 3 we study the stability of the stationary solution in the simpli�ed cylindrical
case (i.e. when ε = 0) via the numerical solution of

∂tψ = [ψ,ϕ] + η(J − Jc),
∂tω = [ω, ϕ] + [ψ, J ] + ν∆ω,
J = ∆ψ,
ω = ∆ϕ.

(3)

We introduce some schemes and the conclusion will be that the stationary solution that we consider is unstable:
this is what is called the current hole [6].

2. The equilibrium: stationary solutions

The equilibrium refers to the stationary solution of (3).

2.1. The Grad-Shafranov operator

In this part we study the Grad-Shafranov equation (2) [1, 13] that models a plasma equilibrium where the
pressure gradient balances the Lorentz force, Ampere's law and the fact that the magnetic �eld B is divergence-
free (see for example [3, 6, 8]). The function ψ is the magnetic �ux and the plasma boundary corresponds to a
surface of constant ψ. The Grad-Shafranov operator ∆∗c is a second-order elliptic operator (the coordinates R
and Z are de�ned in Figure 1a)

∆∗cψ := R2divc

(
1
R2
∇cψ

)
,

where divc and ∇c respectively stands for the divergence and the gradient in the poloidal section for cylindrical
coordinates, namely ∇cA = (∂RA, ∂ZA)T and divcA = R−1∂R(RAR) + ∂ZAZ . The function Jc speci�es the
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plasma current density Jc(R,ψ) = R2p′(ψ) + F (ψ)F ′(ψ), where p is the pressure, and F = RBφ, with Bφ the
toroidal component of the magnetic �eld. Then the equation (2) writes

−R ∂

∂R

(
1
R

∂ψ

∂R

)
− ∂2ψ

∂Z2
= R2 dp

dψ
+ F

dF
dψ

. (4)

Due to the non-linear nature of the Grad-Shafranov equation, a general analytic solution is not possible. How-
ever, for a given RHS, the Grad-Shafranov equation can be solved numerically, with boundary conditions
determined by currents showing in the external control coils which surround the vacuum vessel. A considerable
complication is that the plasma cross-section (i.e. the value of ψ along a curve), in general, is also unknown since
it represents the interface between the plasma and the external vacuum region which is determined by another
non-linear problem, viz. the external free-boundary problem with given currents in external coils. Here, we will
assume that this problem is solved separately so that we prescribe a desired shape of the plasma cross-section.

De�nition 2.1 (Soloviev equilibrium). The Grad-Shafranov equation (4), together with the conditions p′(ψ) =
α = cst and F (ψ)F ′(ψ) = β = cst, is the so-called Soloviev equilibrium. This solution is equivalent to Hill's
spherical vortex solution from �uid mechanics, with ψ representing the Stokes stream function.

To describe the poloidal plane of a torus, let us de�ne the corresponding dimensionless Cartesian coordinates
by the relations (see Figure 1b) R = R0 + ax = R0(1 + εx) and Z = ay. Then the equation (4), together the
Soloviev equilibrium, can be fully expressed with the (x, y)-coordinates as

− 1
a2

(
(1 + εx) ∇ ·

( ∇ψ
1 + εx

))
=
(
αR2

0(1 + εx)2 + β
)
, (5)

where the operator ∇· and ∇ here stand for the classical divergence and gradient in the Cartesian coordinates.

2.2. Weak formulation

The convenient mathematical formulation of the problem is the following. We multiply the equation (5) by
a2ϕ/(1 + εx) where the test function is ϕ and we integrate by parts on the domain Ω. Using the homogeneous
boundary condition we readily obtain the formulation ��nd ψ ∈ V such that a(ψ,ϕ) = `(ϕ) for all ϕ ∈ V � where
the bilinear form and the linear right hand side are

a(ψ,ϕ) =
∫

Ω

∇ψ · ∇ϕ
1 + εx

dΩ, `(ϕ) =
∫

Ω

a2

(
αR2

0(1 + εx) +
β

1 + εx

)
ϕ dΩ

and the convenient functional space is V = H1
0 (Ω). This weak formulation �ts within the frame of the Lax-

Milgram theorem since the bilinear form a is symmetric, continuous and coercive. The linear form ` is continuous.
This ensures the existence and uniqueness of the solution ψ. Other boundary conditions would lead to a di�erent
bilinear form a, a di�erent linear form ` or a slightly di�erent space V but would not compromise the conclusion
of Lax-Milgram theorem.

2.3. Computational examples

We use the �nite element method with linear triangular elements in order to compute the numerical solutions,
as described in the FreeFem++ manual [11]. In order to perform a validation of the code, we present here a set
of computational examples for some analytical solutions that can be found in the literature. A �rst example
permits to describe the structure of the code and to compare results obtained with a boundary elements method.
In a second example a very good convergence is observed. The following examples focus on the handling of
di�erent types of right hand side depending on ψ. In the third example, the right hand side is linear in ψ. In
the fourth example, non-linear right hand sides are considered, so that a linearisation scheme has to be chosen.
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(a) N∂Ω = 200 (b) ψex (c) ψ

Figure 2: Example I: comparison of the exact magnetic �ux ψex and the numerical magnetic �ux ψ with P1

�nite elements. We also plot the mesh.

2.3.1. A �rst example

The domain Ω is de�ned by its frontier ∂Ω =
{

(R,Z) | R = R0

√
1 + 2a cosα

R0
, Z = aR0 sinα, α = 0 : 2π

}
.

The exact solution is given [2]:

ψ(R,Z) =
f0R

2
0

2

(
a2 − Z2 − (R2 −R2

0)2

4R2
0

)
.

For the parameter choice a = 0.5, f0 = 1 and R0 = 1, the numerical results are displayed in Figure 2. A
comparison is possible with [2] where the numerical solution is obtained with the Boundary Element Method.
To show how to compute the solution with FreeFem++ and estimate the error, let us go through all the steps
one by one (for more details see [11]).

• We declare the variables.

int n = 200; // n is the number of the points in the border ∂Ω
real L2error;

• The right hand side g, the boundary condition b and the exact solution ψex are de�ned analytically (in
FreeFem++ variables must be noted x and y).

func g = x^2+1.;
func b = 0.;
func Exact = (1. -(2.*y)^2 -(2.*(x-1.)+(x-1.) ^2) ^2) /8.;

• The boundary is described analytically by a parametric equation for x and for y. The mesh of the
domain is automatically generated by using n points on the border. The domain is assumed to be on
the left side of the boundary which is implicitly oriented by the parametrization. As Ω is not a polygonal
domain, a �skin� remains between the exact domain and its approximation. However, we notice that
all corners of the triangulation lies in ∂Ω. The visualization of the triangulation is done and saved in a
postscript �le.

border Gamma(t=0 ,2.0*pi){x=sqrt (1.+ cos(t));y=0.5* sin(t);}
mesh Th=buildmesh (Gamma(n));
plot(Th,wait=true ,ps="Mesh.eps");

• The �nite element space is a space of polynomial functions on elements, triangles here, with certain
matching properties at edges, vertices etc. Here we de�ne the space P1 of continuous piecewise linear
functions which are equal to 1 on one vertex of the triangulation and 0 on all others. We declare that
ψ, ψex, ϕ and |ψ − ψex| are approximated as continuous piecewise linear functions.

fespace Vh(Th ,P1);
Vh psi ,phi ,error ,psiExact;
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(a) N∂Ω=128

IsoValue
-0.0530442
0.0259281
0.0785764
0.131225
0.183873
0.236521
0.289169
0.341817
0.394466
0.447114
0.499762
0.55241
0.605059
0.657707
0.710355
0.763003
0.815651
0.8683
0.920948
1.05257

(b) ψex

IsoValue
-0.0526076
0.0263038
0.0789114
0.131519
0.184127
0.236734
0.289342
0.341949
0.394557
0.447165
0.499772
0.55238
0.604988
0.657595
0.710203
0.76281
0.815418
0.868026
0.920633
1.05215

(c) ψ

IsoValue
-2.75367
-2.4425
-2.23506
-2.02762
-1.82017
-1.61273
-1.40529
-1.19785
-0.990405
-0.782963
-0.575521
-0.368078
-0.160636
0.0468067
0.254249
0.461692
0.669134
0.876576
1.08402
1.60262

(d) ∂ψex
∂x

IsoValue
-2.76951
-2.45678
-2.24829
-2.03981
-1.83132
-1.62284
-1.41435
-1.20587
-0.997381
-0.788896
-0.58041
-0.371925
-0.16344
0.0450456
0.253531
0.462016
0.670502
0.878987
1.08747
1.60869

(e) ∂ψ
∂x

Figure 3: Second example: comparison of the exact magnetic �ux ψex and the numerical magnetic �ux ψ. We
also plot the mesh and the x-derivative.

• The visualization of the exact solution is done and saved in a postscript �le.

psiExact = Exact;
plot(psiExact ,wait=true ,fill=true ,value=true ,ps="Exact.eps");

• We de�ne the bilinear form of Grad-Shafranov equation and its Dirichlet boundary conditions. In
FreeFem++ there is no need to distinguish the bilinear form from the linear form. As long as the terms
are inside di�erent integrals, FreeFem++ interpreter �nds out which one is the bilinear form by checking
where both terms ψ and ϕ are present. The problem is solved, the visualization of the approximation
is done and saved in a postscript �le.

solve gs(psi ,phi)=
int2d(Th)(dx(psi)*dx(phi)+dy(psi)*dy(phi))

+int2d(Th)(dx(psi)*phi/x)
-int2d(Th)(g*phi)
+on(Gamma ,psi=b);

plot(psi ,wait=true ,value=true ,fill=true ,ps=" Approximation.eps");

• The error E(ψ) = ‖ψ − ψex‖L2/‖ψex‖L2 is computed and written in the console.

error = abs(psi -Exact);
L2error = sqrt(int2d(Th)(square(error)))/sqrt(int2d(Th)(square(psiExact)));
cout << "L2error =" << L2error << endl;

• Results are compared with the exact solution and represented in terms of contours in Figure 2.

2.3.2. Second example: Soloviev Equilibrium with triangularity parameter

In this example we test the solver over a class of analytical solutions which can be written in Cartesian
coordinates as

ψ(x, y) = 1−
(
x− ε

2
(1− x2)

)2

−
((

1− ε2

4

)
(1 + εx)2 + λx

(
1 +

ε

2
x
))(a

b
y
)2

where λ stands for the triangularity parameter. A straightforward computation shows that this solution corre-
sponds to a Soloviev equilibrium, i.e.

−∆∗ψ = α(R0(1 + εx))2 + β with α =
4(a2 + b2)ε+ a2(2λ− ε3)

2R2
0εa

2b2
and β = − λ

b2ε
.
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We remark that ψ = 0 going through (±1, 0) and (0,± b
a ); the shift of the magnetic axis is then given by

(
√

1 + ε2 − 1)ε. For the need of further comparisons with [6], in our tests we use the following parameters:
the ellipticity ε = 3/10, the triangularity λ = 0, the major axis R0 = 5/3, the minor axis a = 1/2 and the
elongation b = 7/10, which implies α ≈ 4.35 and β = 0. The geometry is the D − shaped con�guration de�ned
by ∂Ω = {(x, y) ∈ R2 | ψ(x, y) = 0}, i.e.

y = ± b
a

√√√√ 1− (x− ε
2 (1− x2)

)2(
1− ε2

4

)
(1 + εx)2 + λx

(
1 + ε

2x
) , x ∈ [−1; 1].

In Figure 3 we draw the mesh generated by FreeFem++ withN∂Ω = 128 elements on the border, the magnetic �ux
ψex and the approximated magnetic �ux ψ computed with P1 �nite elements and the exact and approximated
derivatives ∂xψex and ∂xψ. For a given function ξ and its numerical approximation ξex, the error E(ξ) is de�ned
as the relative di�erence in the L2 norm

E(ξ) =
‖ξ − ξex‖L2

‖ξex‖L2
=

√∫
Ω

(ξ − ξex)2 dΩ∫
Ω

(ξex)2 dΩ
.

We obtain the following table of convergence

N∂Ω E(ψ) E(∂ψ/∂x)

22 0.0630042 0.0467509
38 0.0326535 0.0272896
64 0.00706633 0.0109076

128 0.00242758 0.00517435
255 0.000728738 0.00240365
517 0.000269108 0.00127819

1067 0.000009828 0.000653738 102 103

10−4

10−3

10−2

10−1

≈ h2

≈ h

N∂Ω

E(ψ)
E(∂ψ/∂x)

Numerical results match perfectly the theoretical expectations: P1 elements provide a second convergence
rate for the magnetic �ux, while gradients are approximated at �rst order.

2.3.3. Third example: Linear RHS

We consider here a �rst example of RHS without Soloviev equilibrium:

1
R

∂ψ

∂R
− ∂2ψ

∂R2
− ∂2ψ

∂Z2
= (R2 + 1)ψ. (6)

Straightforward computation shows that the analytical solution is ψ(R,Z) = cos
(
R2

2

)
cos(Z)− 1

2 . The compu-

tational domain Ω is

∂Ω =

{
(R,Z) | R ∈ [ 2

3

√
3π, 2

3

√
6π], Z = arccos

(
1

2 cos R2

2

)
∪ Z = 2π − arccos

(
1

2 cos R2

2

)}
.

Figure 4 shows the exact and the approximated solutions represented in terms of contours obtained by
FreeFem++ with P1 �nite elements: the numerical solution agrees very well with the analytical one.
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Maillage

(a) Mesh

IsoValue
0.47371
0.513144
0.539434
0.565723
0.592012
0.618302
0.644591
0.670881
0.69717
0.72346
0.749749
0.776038
0.802328
0.828617
0.854907
0.881196
0.907485
0.933775
0.960064
1.02579

Exact

(b) ψex

IsoValue
0.473776
0.513112
0.539337
0.565561
0.591785
0.61801
0.644234
0.670458
0.696683
0.722907
0.749132
0.775356
0.80158
0.827805
0.854029
0.880253
0.906478
0.932702
0.958927
1.02449

Approximation

(c) ψ

Figure 4: Third example: comparison of the exact solution ψex and the numerical solution ψ. We also plot the
mesh.

2.3.4. Fourth example: Polynomial non-linear RHS

In this section we consider a non-linear right hand side for the Grad-Shafranov equation. There is no result
concerning uniqueness of the solution, but we would still like to adapt the previous method by de�ning an
iterative sequence. In what follows we study the convergence of the algorithm to a know analytical solution.

Consider a general problem described by

−∆∗cψ = G(ψ), (7)

where the non-linear function G can be written as ψG1(ψ) + G2(ψ). A Picard's iteration (8) starts from any
initial function, then each calculus step solves a linear problem which depends on the previous step's result.
Each step is performed by solving the same linear problem corresponding to the example 3, so that the basic
method is kept unchanged. The issue is then to choose how to de�ne this linear formulation. To obtain the
desired linear right hand side with respect to ψ, the functions G1 and G2 has to depend only on the result of
the previous step, denoted ψn. From then on we consider the algorithm{

ψ0 given,

−∆∗cψn+1 = ψn+1G1(ψn) +G2(ψn),
(8)

and the iteration is stopped when N (ψn+1 − ψn) < tol where N is a norm and tol a prescribed tolerance. In
fact each choice of G1 and G2 gives a new scheme.

Here we detail the case G(ψ) = ψ2
(
k1 + k2R

2ψ
)
, together with Dirichlet boundary conditions, on the domain

Ω de�ned in poloidal coordinates by R ∈]0, 1[ and z ∈]− 1, 1[. When k2 = 2a(k1 − 9a), an analytic solution of
this equation is given [12] by ψex = −6/(9aR2 + k1(z + c1)2). The variational formulation reads∫

Ω

(
∂ψ

∂R

∂ϕ

∂R
+
∂ψ

∂z

∂ϕ

∂z
+

1
R

∂ψ

∂R
ϕ

)
=
∫

Ω

(
k1ψ

2ϕ+ k2R
2ψ3ϕ

)
+ boundary terms, (9)

so that the point is now to choose the implicit and explicit parts of the second integral. As explained earlier,
the aim is to obtain a linear term in ψn+1 plus a term only depending on ψn. Let (β, δ) be parameters and let
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us write the second term ∫
Ω

(
k1 (ψk)2−β (ψk+1)β ϕ+ k2R

2 (ψk)3−δ (ψk+1)δ ϕ
)
. (10)

In order to get the desired form, the parameters (β, δ) have to belong to {0, 1}2: it provides at most linear
terms in the unknown ψk+1. In our test the starting point for the iterative method is a perturbation of the
exact solution: ψ0 = ψex(1 +R(R− 1)(z + 1)(z − 1)); the parameters are k1 = 0.1, a = 0.1 and c1 = 2, and the
domain studied is the square Ω = {(R, z) ∈ [0, 1]× [−1, 1]}. Here is the description of the di�erent schemes:

Scheme (1) (2) (3) (4)

β 0 0 1 1
δ 0 1 0 1

(11)

We tested this four schemes with P1 and P2 types �nite elements and tol = 10−5/2 to stop the iterations. It
is obvious that the behavior of the scheme is governed by the higher order polynomial term (described by δ):
an implicit term has to be chosen there to allow any hope of convergence toward the analytical solution. We
de�ne the relative error in N norm as E(ψ) = N (ψ − ψex)/N (ψex). Using the P1 elements, the scheme (2)
shows a convergence order of 1.712 in L2 norm, 1.034 in H1 norm. The scheme (3) a convergence order of
1.608 in L2 norm, 1.031 in H1 norm and the scheme (4) a convergence order of 1.764 in L2 norm, 1.036 in
H1 norm. Another kind of behavior is observed for the scheme (1): it seems that the computation converges,
but to another solution. In fact, as the problem is non linear, the equation may have several solutions. Here
we underline the fact that the schemes (2) and (4) which seem to converge to the given analytical solution,
both make implicit the term of higher degree in the polynomial right hand side. Both of them satisfy δ = 1.
More research is needed to obtain more de�nitive conclusions for this problem. In particular one may think of
studying the in�uence on the non linearity and of the amplitude of the initial perturbation.

3. The Current Hole: unstable equilibrium

This part is devoted to the implementation of the time-dependent problem (3). For the need of further
comparisons with analytical work, we simplify the problem and choose the planar cylindrical geometry: that is
ε = 0 (it is not a restriction). In this case ∆∗ = ∆⊥ = ∆. Thus the model reads (x ∈ Ω, t ∈ [0, T ])

∂tψ = [ψ,ϕ] + η(J − Jc), (12a)

∂tω = [ω, ϕ] + [ψ, J ] + ν∆ω, (12b)

J = ∆ψ, (12c)

ω = ∆ϕ. (12d)

This is a non linear and non stationary system of partial di�erential equations. As the initial conditions for the
time-dependent simulations, we use the solution of the Grad-Shafranov equilibrium based on current pro�le.
The velocity and vorticity are set to zero. Thus at t = 0 we set

ϕ(0, x) = ω(0, x) = 0, x ∈ Ω,
J(0, x) = Jc(x), x ∈ Ω,
ψ(0, x) = ∆−1Jc(x), x ∈ Ω.

To close the system we consider as before the homogeneous Dirichlet boundary conditions for all variables

ϕ(t, x) = ω(t, x) = ψ(t, x) = J(t, x) = 0, x ∈ ∂Ω, t ∈ [0, T ].
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The system (12) veri�es some conservation properties.

Proposition 3.1 (Energy Conservation). Assume η = ν = 0. Then regular solutions of (12) satisfy

1
2

d
dt

∫
Ω

|∇ψ|2 + |∇ϕ|2 dx = 0.

Remark 3.2. Notice that
∫

Ω
|∇ψn+1|2 + |∇ϕn+1|2 dx =

∫
Ω
|B|2 + |u|2 dx is the total energy. If one assumes

that Jc = 0 but η > 0 and ν > 0, then one gets

1
2

d
dt

∫
Ω

|∇ψ|2 + |∇ϕ|2 dx ≤ 0.

Proof. With the assumption η = ν = 0, and knowing that J = ∆ψ and ω = ∆ϕ, the model (12) writes{
∂tψ = [ψ,ϕ], (13a)

∂t(∆ϕ) = [∆ϕ,ϕ] + [ψ,∆ψ], (13b)

Multiplying (13a) by ∆ψ and (13b) by ϕ and integrating over Ω, we get

d
dt

∫
Ω

|∇ψ|2 dx +
∫

Ω

[ψ,ϕ]∆ψ dx = 0,

d
dt

∫
Ω

|∇ϕ|2 dx +
∫

Ω

[∆ϕ,ϕ]ϕ dx +
∫

Ω

[ψ,∆ψ]ϕ dx = 0.

The energy identity is �nally obtained using the following property of the Poisson brackets∫
Ω

[a, b]c dx =
∫

Ω

a[b, c] dx +
∫
∂Ω

ac(∇× b · n) dσ

where n is the outgoing normal to the surface dσ, together with the boundary conditions ψ = ϕ = 0 on ∂Ω,
from (1). �

Proposition 3.3 (Magnetic Helicity Conservation). With the same hypotheses as in proposition 3.1, one has

d
dt

∫
Ω

ψ dx = 0.

Proof. See [3, page 21]. Since the right hand side of the ψ equation can be written is divergent form, this is
immediate. �

Proposition 3.4 (Cross-Helicity Conservation). With the same hypotheses as in proposition 3.1, one has

d
dt

∫
Ω

∇ϕ · ∇ψ dx = − d
dt

∫
Ω

ωψ dx = 0.

Proof. See [3, page 21]. �

Consistently with [6], we will choose in our numerical tests the following radial pro�le for the source term

Jc =
(1−R4)

5
− 0.266(1−R2)8,

with R2 = x2
1 + x2

2 for x ∈ Ω = C(0, 1), and the viscosity parameters η = 1 · 10−5 and ν = 1 · 10−6.
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3.1. Von Neumann stability analysis

In the following paragraph, we show that it is possible to solve the MHD reduced system (12) numerically
using an explicit time scheme for all the non-linear terms and that this scheme is stable under a CFL condition

δt ≤ Ch where h is the minimal space step. Let X =
(
δψ, δϕ, δJ, δω

)T
and ∂tX = F (X). In order to apply the

von Neumann stability analysis, we linearise the system of equations. Taking X = X +X ′, with ∂tX = F (X)
and ‖X ′‖ � ‖X‖, we have

∂tX = ∂tX + ∂tX
′ = F (X +X ′) = F (X) +∇F (X) ·X ′ + o(X ′)

so the linearization [10] provides ∂tX
′ = ∇F (X) ·X ′. In our case, this corresponds to

∂tψ
′ = [ψ,ϕ′] + [ψ′, ϕ] + η∆ψ′, (14a)

∂tω
′ = [ω, ϕ′] + [ω′, ϕ] + [ψ, J ′] + [ψ′, J ] + ν∆ω′, (14b)

J ′ = ∆ψ′, (14c)

ω′ = ∆ϕ′. (14d)

We remark that the di�usive terms η∆ψ′ and ν∆ω′ integrated reasonably well (i.e. in an implicit scheme or
explicitly under the condition δt ≤ h2/η and δt ≤ h2/ν) smooth out the solution. Then the interesting case is
when η and ν are small, so let us make the assumption that η and ν vanish, and see what happens regarding
the linear stability of the equations.

We assume that X ′ = ei(ξ1x1+ξ2x2)X0, then J
′ = −|ξ|2ψ′, ω′ = −|ξ|2ϕ′ and, from (14a) and (14b),{

∂tψ
′ = [ψ,ϕ′] + [ψ′, ϕ],

∂tϕ
′ = − 1

|ξ|2 [ω, ϕ′] + [ϕ′, ϕ] + [ψ,ψ′]− 1
|ξ|2 [ψ′, J ].

As we study the numerical instabilities for large values of |ξ|, we can neglect the two terms multiplied by 1/|ξ|2.
Then knowing that [a, b] = −[b, a] we write:{

∂tψ
′ = [ψ,ϕ′]− [ϕ,ψ′],

∂tϕ
′ = −[ϕ,ϕ′] + [ψ,ψ′],

i.e.
∂

∂t

(
ψ′

ϕ′

)
= M

(
ψ′

ϕ′

)
with M(·) :=

(−[ϕ, ·] [ψ, ·]
[ψ, ·] −[ϕ, ·]

)
.

Putting ξ = |ξ|(cos θ, sin θ), the operator-matrix M is symmetric and can be put under the form:

M = i|ξ|Qθ

(
µ

(1)
θ 0
0 µ

(2)
θ

)
Q−1
θ

with Qθ independent of |ξ| and 0 ≤ µ(1)
θ , µ

(2)
θ ≤ ‖∇ϕ‖L∞ + ‖∇ψ‖L∞ .

As a conclusion, the reduced MHD model (12) is equivalent to a transport equation regarding the local
numerical stability. Hence, high order explicit schemes (see Figure 5 for the domains of stability) are stable under
the CFL condition δt ≤ Ch/µ with C ≈ 1 a constant depending on the scheme and µ = ‖∇ϕ‖L∞ + ‖∇×ψ‖L∞ .

3.2. Numerical Discretization

The von Neumann stability analysis shows that, although possible, an explicit time discretization of (12)
leads to a restrictive CFL condition. Therefore, in addition to the Adams-Bashforth order two scheme treated
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Figure 5: Von Neumann stability domains for the �rst four Runge-Kutta and Adams-Bashforth schemes. The
operator M is along the (Oy) axis.

at the end of this section, we consider two implicit schemes: the �rst scheme, the Crank-Nicolson scheme, is
directly inspired by [6], the second scheme is similar to the one in [9]. The Crank-Nicolson scheme and the
stable time integrator require the resolution of linear systems.

Let us denote by (ψn, ϕn, ωn) the approximate value at time t = tn and by δt the time increment: that is
tn+1 = tn + δt. Then the unknown �elds at time t = tn+1 are obtained by solving

ψn+1 − ψn
δt

= [ψn + αδψ, ϕn + βδϕ] + η(Jn + γδJ)− ηJc,
ωn+1 − ωn

δt
= [ωn + αδω, ϕn + βδϕ] + [ψn + αδψ, Jn + βδJ ] + ν∆(ωn + γδω),

δJ = ∆(δψ),
δω = ∆(δϕ),

with the same initial and boundary conditions as before, and α, β, γ ∈ [0, 1] parameters of the numerical
scheme for the time integration. Neglecting higher order cross terms, the matricial formulation of our system
of equations is

M


δψ
δϕ
δJ
δω

 = δt


[ψn, ϕn] + η(Jn − Jc)

[ωn, ϕn] + [ψn, Jn] + ν∆ωn
0
0


where

M(·) :=


Id + αδt[ϕn, ·] −βδt[ψn, ·] −γηδtId 0
αδt[Jn, ·] −βδt[ωn, ·] −βδt[ψn, ·] Id + αδt[ϕn, ·]− γνδt∆(·)
−∆(·) 0 Id 0

0 −∆(·) 0 Id

 . (15)

Remark 3.5. Only the resolution of a global linear system is needed in order to compute the �elds at the new
time step.

3.2.1. Crank-Nicolson time integrator: α = β = γ = 1
2

It is based on a linearised Crank-Nicolson scheme. The equation ∂tu = F (u) is discretized in time by the
following order two scheme:

un+1 − un
δt

=
1
2

(F (un) + F (un+1))
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with un+1 = un + δu, then we have to solve(
Id − δt

2
∇F (un)

)
︸ ︷︷ ︸

M

δu = δt F (un).

In the case of the reduced MHD equations (12), the system to solve writes

M


δψ
δϕ
δJ
δω

 = δt


[ψn, ϕn] + η(Jn − Jc)

[ωn, ϕn] + [ψn, Jn] + ν∆ωn
0
0


where the matrix M corresponds to

M(·) :=


Id + δt

2 [ϕn, ·] − δt2 [ψn, ·] − δt η2 Id 0
δt
2 [Jn, ·] − δt2 [ωn, ·] − δt2 [ψn, ·] Id + δt

2 [ϕn, ·]− δt ν
2 ∆(·)

−∆(·) 0 Id 0
0 −∆(·) 0 Id

 . (16)

Although the discrete unknowns usually satisfy J ∈ P0, ϕ, ω ∈ P1, ψ ∈ P2, we tested the two cases ψ,ϕ, J, ω ∈ P1

and ψ,ϕ, J, ω ∈ P2 with FreeFem++. The solution has also to satisfy homogeneous Dirichlet boundary conditions
for the four �elds ψ = ϕ = J = ω = 0 on ∂Ω, as well as the initial conditions −∆∗ψ0 = J0 = Jc and ω0 = ϕ0 = 0
on Ω at t = 0. In the scope of the analysis 3.1, the domain of stability of the Crank-Nicolson scheme is the half
plan {<e(z) ≤ 0}. This domain has to be compared with the stability domains of explicit schemes (see Figure 5)
which are bounded and which therefore have to satisfy CFL conditions. So, notwithstanding the non-linearity,
the Crank-Nicolson scheme is stable for these equations in the sense that it does not have to satisfy any CFL
condition (cf. [7, 10]).

3.2.2. Unconditional stable time integrators

First scheme: α = 0, β = γ = 1. This method is similar to the one proposed in [9, page 131]. This choice in
the de�nition of the matrix (15) corresponds to the system

ψn+1 − ψn
δt

= [ψn, ϕn+1] + ηJn+1 − ηJc, (17a)

ωn+1 − ωn
δt

= [ωn, ϕn+1] + [ψn, Jn+1] + ν∆ωn+1, (17b)

Jn+1 = ∆ψn+1, (17c)

ωn+1 = ∆ϕn+1. (17d)

This scheme is unconditionally stable, but �rst order and has the following properties.

Proposition 3.6. [Discrete Energy Conservation] Assume that Jc = 0 and α = 0, β = γ = 1. One has the
inequality for all δt > 0 ∫

Ω

|∇ψn+1|2 + |∇ϕn+1|2 dx ≤
∫

Ω

|∇ψn|2 + |∇ϕn|2 dx. (18)
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Proof. We multiply the equation (17a) by −∆ψn+1 and the equation (17b) by −ϕn+1. After integration by
parts using the Dirichlet boundary condition, one gets the identities∫

Ω

|∇ψn+1|2 dx =
∫

Ω

∇ψn+1 · ∇ψn dx− δt
∫

Ω

[ψn, ϕn+1]∆ψn+1 dx− δtη
∫

Ω

|Jn+1|2 dx,∫
Ω

|∇ϕn+1|2 dx =
∫

Ω

∇ϕn+1 · ∇ϕn dx− δt
∫

Ω

[ωn,
(ϕn+1)2

2
] dx− δt

∫
Ω

[ψn,∆ψn+1]ϕn+1 dx− δtη
∫

Ω

(ωn+1)2 dx.

One has δt
∫

Ω
[ωn,

(ϕn+1)2

2 ] dx = 0 and∫
Ω

[ψn, ϕn+1]∆ψn+1 dx + δt

∫
Ω

[ψn,∆ψn+1]ϕn+1 dx = 0,

therefore ∫
Ω

|∇ψn+1|2 dx +
∫

Ω

|∇ϕn+1|2 dx ≤
∫

Ω

∇ψn+1 · ∇ψn dx +
∫

Ω

∇ϕn+1 · ∇ϕn dx.

The use of the Cauchy-Schwartz inequality ends the proof. �

Remark 3.7. Our numerical tests show that the numerical solution captured by this time integrator has the
same features that the one captured by the Cranck-Nicolson time integrator.

Second scheme: α = 0, β = γ = 1
2 . This choice in the de�nition of the matrix M corresponds to the system

ψn+1 − ψn
δt

= [ψn,
ϕn+1+ϕn

2 ] + η Jn+1+Jn

2 − ηJc, (19a)

ωn+1 − ωn
δt

= [ωn,
ϕn+1+ϕn

2 ] + [ψn,
Jn+1+Jn

2 ] + ν∆ωn+1+ωn

2 , (19b)

Jn+1 = ∆ψn+1, (19c)

ωn+1 = ∆ϕn+1. (19d)

We obtain the same property (18). The proof is almost the same as the proof of proposition 3.6: we multiply

the �rst equation by −∆
(
ψn+1+ψn

2

)
and the second one by −ϕn+1+ϕn

2 and perform the same kind of integration

by parts. It is reasonable to think that this method has better preservation properties for the energy.

3.2.3. Adams-Bashfoth time integrator

As suggested by part 3.1, it is possible to use an explicit numerical integration in time for the non-linear
terms. We have tested the Adams-Bashforth order two scheme for the non-linear terms and coupled to an
implicit scheme for the di�usion. As the space discretization is of low order, the numerical viscosity is su�cient
to stabilize the scheme. So this scheme turns out to be stable under the CFL stability condition δt ≤ Ch/µ
with C slightly inferior to 1/2, and µ the sup of the derivatives of ψ and ϕ. The numerical integration in time
is given by:

(
Id− δt

2 η∆
)
ψn+1 = ψn + 3

2δt ([ψn, ϕn]− ηJc)− 1
2δt ([ψn−1, ϕn−1]− ηJc) + δt

2 η∆ψn),(
Id− δt

2 ν∆
)
ωn+1 = ωn + 3

2δt ([ωn, ϕn] + [ψn,∆ψn])− 1
2δt ([ωn−1, ϕn−1] + [ψn−1,∆ψn−1]) + δt

2 ν∆ωn),
∆ϕn+1 = ωn+1.

Contrarily to a standard explicit Euler scheme, the Adams-Bashforth scheme of order two allows to compute a
solution for the Current Hole experiment on the FreeFem++ platform. The solution is converged with a smaller
δt than for the Crank-Nicolson scheme (cf. Figure 6). The explicit treatment of the non-linear terms restricts
the linear equations to symmetric operators and allows to speed up the computations.
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3.3. Numerical results and discussion

We tested three di�erent numerical schemes to solve the Current Hole. Regarding the initial conditions,
the initial magnetic �ux ψ0 is obtained by solving the Laplace equation (12c) with homogeneous boundary
conditions. The initial electric potential ϕ0 and vorticity ω0 are taken equal to zero. In our test the source term
is [6]

Jc = j1(1− r4)− j2(1− r2)8 with j1 = 02 and j2 = 0.2666.
The viscosity is ν = 10−6 and the resistivity η = 10−5. In Figure 6, we represent the �nal results at t = 2000 of
numerical experiments with the Crank-Nicolson scheme and with the Adams-Bashforth second order scheme.
We also compare with the unconditionally stable algorithm. The results are visually very similar. The error is
totally dominated by the space discretization.

Using an explicit scheme (such as the second order Adams-Bashfoth scheme) allows to diminish the CPU
burden per iteration for the computation of the solution of the next step (16). In a Galerkin formulation, there
is no numerical viscosity coming from the space discretization to stabilize the numerical scheme. Hence, the
Adams-Bashforth scheme order two, which enhances the small scales (see the graph of stability Fig. 5 right)

may create spurious oscillations. Therefore, it requires the stronger stability condition ∆t ≤ C h
4
3 than the

CFL condition (see [7] for more details). As a result, it needs much smaller time steps than the Crank-Nicolson
scheme, whose linear stability domain is exactly the left half-plan (to compare with Figure 5) and which does
not have to satisfy any CFL condition in order to be stable. However, for large time steps, the Crank-Nicolson
scheme becomes unstable because the equations (12a)-(12d) are non linear. The unconditionally stable algorithm
is stable for even larger time steps (up to δt = 10).

In an attempt to familiarize the reader with the FreeFem++ platform, we brie�y describe essential steps for
coding the Crank-Nicolson scheme. Once the domain mesh is constructed and the appropriate P1 or P2 �nite
element spaces are initialized, we are ready to de�ne the components of the matrix M and of the right hand
side vector. The following piece of FreeFem++ script illustrates the implementation: one should �rst de�ne the
variational form for each matrix component, and then to build the global matrix.

varf a11(u,v) = int2d(Th)(u*v) + int2d(Th)(0.5*dt*(dx(Phi)*dy(u)-dy(Phi)*dx(u))*v) + on(1,u=0)
...
matrix A11;
A11 = a11(Vh ,Vh);
....
M = [ [A11 ,A12 ,A13 ,0], [A21 ,A22 ,A23 ,A24], [0,A32 ,0,A34], [A41 ,0,A43 ,0] ];

The matrix is non symmetric. When choosing a right solver, it is important to consider hardware resources,
mainly available memory. For relatively coarse discretizations, we advocate a use of the direct UMFPACK solver,
based on the LU factorization. For �ne meshes, iterative solver, such as GMRES could be used. However, the
authors observed di�culties in convergence of a GMRES solver. The reasons for this poor performance are
subject to further investigations.

set(M, solver=UMFPACK , eps=1e-8);

In the case of the Adams-Bashforth scheme order two, the convective terms are computed explicitly so the
matrix (16) is symmetric, positive-de�nite and invariant along the time. This allows to use a conjugate gradient
solver (GMRES) or to invert the matrix (16) at the beginning of the routine once for all the time steps.

The code has been run on a cluster node with two Intel Xeon E5540 processors, i.e. 8 cores in total. For this
particular example, the spatial resolution has been chosen h = 0.01 for Ω = C(0, 1), which leads to approximately
142 · 103 degrees of freedom when using P1 elements. It takes 0.2 second per time step when using a parallel
version of the direct solver, UMFPACK V5.4, INTEL MKL V10.3.

Our results for the current hole problem are comparable to the ones obtained in [6]. The pro�le exhibits a
zone of negative current density close to the axis namely the �current hole�. Figure 7 shows snapshots of the
current pro�le at di�erent stages of the internal kink evolution. The current surface, initially axisymmetric,
remains identical during the linear stage in the early part of the transient, where non-linear e�ects are still
negligible. At the end of this stage, the pro�le is progressively deformed: current density is expelled outward
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(a) Mesh, h ∼ 0.05 (b) Crank-Nicolson, δt = 1

(c) Adams-Bashforth order 2, δt = 0.1
(d) Unconditionally stable scheme, δt = 2

Figure 6: Numerical stability of di�erent time integrator, t = 2000. All three results are very similar. This
probably is due to the fact that the mesh is the same. The time step is greater for the unconditionally stable
scheme.

from the central axis, generating a current sheet at the resonant surface. At the end of the crash, the pro�le close
to the centre is �attened, leaving only residual �uctuations around J = 0. Finally we notice that the original
problem is invariant by rotation: therefore the orientation and dynamics of the instability can be triggered by
the mesh used for the simulation and by the time step; in particular a similar instability is observed in Figure 6
and in Figure 7, but at di�erent angle and time.

4. Conclusion and Perspectives

We have presented the use of the FreeFem++ computational tool for the numerical solution of resistive ideal
MHD equations adapted to realistic geometrical tokamak con�gurations. The method was �rst applied for the
computation of the equilibrium problem and then to the non stationary problem. Some conclusions can already
be established for the equilibrium problem: FreeFem++ is very easy to handle and adapted to solve this kind of
problems in general geometry, we observe a good agreement with the literature; some questions remain open.
It is essentially related to polynomial non-linear right hand sides: in the case of multiple solutions, we need
a criteria to select the physical one; is there a criterion to decide a priori what is the more adapted Finite
Element type. Concerning the application to the computation of the time-dependent problem of a current hole
in a cylindrical geometry, the results are consistent with the results [6] that were obtained with a completely
di�erent method. Since the mesh is a general unstructured one, the mesh is by itself a source of perturbation
at time t = 0. In consequence there is no need of an initial perturbation for the numerical characterization of
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(a) t = 500 (b) t = 2000

(c) t = 2200 (d) t = 2500

(e) t = 2600 (f) t = 3000

Figure 7: Plots of the current J computed with FreeFem++. Numerical experiment for the Current Hole,
equations (12) discretized with P1 �nite elements and Crank-Nicolson scheme in time with h = 0.01, δt = 1.
We observe that the initial stationary solution is unstable.
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the current hole. It is possible to evaluate easily di�erent time integrators on the same problem (FreeFem++

scripts used in this paper can be downloaded at http://www.ann.jussieu.fr/~gostaf/emaff/).
A general conclusion is that FreeFem++ is very well adapted for the e�ective simulation of such non trivial

plasma problems.
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Code for the current hole: the Crank-Nicolson scheme

// reduced MHD -- Crank -Nicolson

verbosity = 0;
int n = 120;
real jj1=.2, jj2=.266, eta=1e-5, nu=1e-6, dt=1., T=2e4;

//=======================================================
border C1(t=0,2*pi){x=cos(t);y=sin(t);label =1;}
func ThMHD=C1(n);
mesh Th=buildmesh(ThMHD);
plot(Th,wait =1);
//=======================================================

fespace Vh(Th,P1);
Vh Psi , dPsi , Phi , dPhi , J, dJ, W, dW, v;

func Jc=jj1*(1-(x^2+y^2) ^2)-jj2*(1-x^2-y^2) ^8;

varf mass(u,v) = int2d(Th)(u*v);
varf massDirichlet(u,v) = int2d(Th)(u*v)+ on(1,u=0);
varf delta(u,v) = int2d(Th)(dx(u)*dx(v) + dy(u)*dy(v));

problem deltaDir(Psi ,v)
= int2d(Th)(dx(Psi)*dx(v) + dy(Psi)*dy(v)) + int2d(Th)(J*v) + on(1,Psi =0);

varf cpPhi(u,v) = int2d(Th)( 0.5 * dt * (dx(Phi)*dy(u) - dy(Phi)*dx(u))*v);
varf cpPsi(u,v) = - int2d(Th)( 0.5 * dt * (dx(Psi)*dy(u) - dy(Psi)*dx(u))*v);
varf cpJ(u,v) = int2d(Th)( 0.5 * dt * (dx(J) *dy(u) - dy(J) *dx(u))*v);

http://www.ann.jussieu.fr/~gostaf/emaff/
http://smai.emath.fr/cemracs/cemracs10/
http://smai.emath.fr/cemracs/cemracs10/
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varf cpWDirichlet(u,v)
= - int2d(Th)( 0.5 * dt * (dx(W) *dy(u) - dy(W) *dx(u))*v) + on(1,u=0);

matrix Md, MdDir , Delta , CPPhi , CPPsi , CPWDir , CPJ , A11 , A13 , A24 , K;

Md = mass(Vh,Vh);
MdDir = massDirichlet(Vh,Vh);
Delta = delta(Vh,Vh);

A13 = -0.5 * dt * eta * Md;

J = Jc;
Phi = 0.0;
W = 0.0;

deltaDir;

for (int i=0;i<=T/dt;i++) {

if (i%5==0) plot(J,fill =1);

CPPhi = cpPhi(Vh,Vh);
CPPsi = cpPsi(Vh,Vh);
CPWDir = cpWDirichlet(Vh,Vh);
CPJ = cpJ(Vh ,Vh);

A11 = MdDir + CPPhi;
A24 = Md + CPPhi + 0.5 * dt * nu * Delta;

K = [ [A11 , CPPsi , A13 , 0], [CPJ , CPWDir , CPPsi , A24], [0, Delta , 0, MdDir], [Delta , 0, MdDir , 0] ];

real[int] F(4*Vh.ndof), F3(Vh.ndof), U(4*Vh.ndof);
Vh F1 , F2;

varf f1(u,v) = int2d(Th)( dt * (dx(Psi)*dy(Phi) - dy(Psi)*dx(Phi) + eta * (J-Jc))*v) + on(1,u=0);
varf f2(u,v) = int2d(Th)( dt * (dx(W)*dy(Phi) - dy(W)*dx(Phi) + dx(Psi)*dy(J) - dy(Psi)*dx(J))*v - dt *

ånu * (dx(W)*dx(v) + dy(W)*dy(v))) + on(1,u=0);

F1[] = f1(0,Vh);
F2[] = f2(0,Vh);
F3 = 0.0;
F = [F1[],F2[],F3,F3];

set(K,solver=UMFPACK);
U = K^-1*F;

[dPsi[],dPhi[],dJ[],dW[]] = U;

Psi []+= dPsi [];
Phi []+= dPhi [];
J[] +=dJ[];
W[] +=dW[];

}
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