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Numerical methods for solving the Navier-Stokes equations for classical (or normal) viscous 
fluids are well established. This is also the case for the Gross-Pitaevskii equation, governing 
quantum inviscid flows (or superfluids) in the zero temperature limit. In quantum flows, 
like liquid helium II at intermediate temperatures between zero and 2.17 K, a normal fluid 
and a superfluid coexist with independent velocity fields. The most advanced existing 
models for such systems use the Navier-Stokes equations for the normal fluid and a 
simplified description of the superfluid, based on the dynamics of quantized vortex 
filaments, with ad hoc reconnection rules. There was a single attempt (C. Coste, 1998 
[22]) to couple Navier-Stokes and Gross-Pitaevskii equations in a global model intended to 
describe the compressible two-fluid liquid helium II. We present in this contribution a new 
numerical model to couple a Navier-Stokes incompressible fluid with a Gross-Pitaevskii 
superfluid. Coupling terms in the global system of equations involve new definitions of 
the following concepts: the regularized superfluid vorticity and velocity fields, the friction 
force exerted by quantized vortices to the normal fluid, the covariant gradient operator 
in the Gross-Pitaevskii model based on a slip velocity respecting the dynamics of vortex 
lines in the normal fluid. A numerical algorithm based on pseudo-spectral Fourier methods 
is presented for solving the coupled system of equations. Finally, we numerically test and 
validate the new numerical system against well-known benchmarks for the evolution in a 
normal fluid of different types or arrangements of quantized vortices (vortex crystal, vortex 
dipole and vortex rings). The new coupling model has the advantage to keep the full Gross-
Pitaevskii model for the superfluid, and thus describe quantized vortex dynamics without 
any phenomenological approximation. This opens new possibilities to revisit and enrich 
existing numerical results for complex quantum fluids, such as quantum turbulent flows.
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1. Introduction

Realistic numerical models for quantum flows, such as liquid helium below the critical (lambda) temperature Tλ = 2.17K , 
have to accommodate with the celebrated two-fluid model [1,2] stating that two fluids with independent velocity fields 
coexist in the system: a normal viscous fluid and an inviscid superfluid. If each component is taken separately, governing 
equations and numerical models are universally accepted: the Navier-Stokes (NS) equations for the normal fluid (the only 
one present in helium if T > Tλ) and the Gross-Pitaevskii (GP) equation for the superfluid (dominant for T < 0.3K ). For 
intermediate temperatures, both components are present, with different physics. In the superfluid, quantized vortices are 
nucleated with fixed (quantized) circulation and fixed core diameter (of the atomic size). Complex interactions between 
quantized vortices tangled in space can lead to Quantum Turbulence (QT). In the normal fluid, vortices or eddies can 
develop characteristic scales from the Kolmogorov viscous scale up to the container size and eventually generate turbulence. 
Note that the GP equation is known to well describe low-T co-flow QT [3–6] and can be extended to describe helium 
equation of state and dispersion law at zero temperature [7].

Existing numerical models for quantum two-fluid flows either focus on a single component (using NS or GP models) 
or simplify the physics of one component in the two-fluid setting. The Hall–Vinen–Bekharevich–Khalatnikov (HVBK) model 
[8–10] describes the normal fluid motion by the NS model, while the superfluid motion is simplified to an Euler-like 
equation. The two fluids are coupled through a friction force that takes into account the influence of quantized vortices 
through a coarse-grained averaged superfluid vorticity. The average is considered over an ensemble of parallel (polarized) 
vortex filaments to find an equivalent solid-body vorticity for a dense bundle of vortex lines. The individual dynamics of 
quantized vortices thus disappears in the HVBK model.

A different trade-off is made in Line Vortex Navier-Stokes (LV-NS) models. Quantized vortices are described as geomet-
rical lines, with infinite velocity and singular vorticity at the centerline. Vortex lines are moved following the Biot-Savart 
law. Note that the derivation of the Biot-Savart law in the context of nonlinear Schrödinger equation, when the curvature 
radius of vortex lines and the inter-vortex distance are much greater than the core radius, is presented in [11]. Mutual 
friction is described, in a more mesoscopic way, by assessing the interaction between the normal NS fluid and the vortex 
line dynamics [12–14]. These phenomenological LV-NS models typically contain two ingredients. First, on the vortex lines, 
a slip velocity is added to the Biot-Savart line velocity. This slip velocity is obtained as a function of the counterflow (the 
difference between the normal fluid velocity on the line and the line velocity) by a standard argument based on the balance 
of friction and Magnus forces. Second, a spatially smoothed friction force, opposite to the friction force acting on the line, 
is added as a source term in the NS equations. These vortex line models use phenomenological algorithms to deal with 
vortex reconnection and vortex nucleation. While recent vortex reconnection algorithms were proved to accurately describe 
the physics of vortex interactions when compared to experiments or GP dynamics [15,16], vortex nucleation is simply non-
existent in these models. Vortex lines are individually set in the initial condition to reproduce experimentally generated 
vortices [17]. This could be an important limitation when modelling flows with vortices nucleated from boundaries (rough 
walls) or obstacles [18].

The present contribution is a first attempt, to the best of our knowledge, to directly couple incompressible NS and GP 
models and thus numerically simulate, without any simplification, the dynamics of a two-fluid quantum flow. The model is 
inspired by existing LV-NS models from which we extract the main physical ingredients of the mutual friction produced by 
the interaction of the normal fluid and superfluid vortices. The novelty is that we transpose this mutual friction coupling 
into the framework of the GP model that has the advantage to describe vortex nucleation and vortex interactions without 
any phenomenological assumptions [19,20]. We develop consistent expressions for the coupling with new interaction terms 
and we prove numerically that they are compatible with known phenomenological mutual friction laws. We first derive a 
regularized line velocity field that is smooth and reduces to the value of the line velocity, when evaluated on the vortex line. 
Using this regularized velocity field we build a slip velocity field that is used to couple GP and NS equations. As a main 
consequence of this study, coupling of NS and GP numerical codes becomes possible with this new GP-NS model.

We should mention that, in the different context of Landau’s original compressible two-fluid model [21] describing sec-
ond sound and containing neither vortices nor mutual friction, Coste [22] studied ways to couple NS and GP equations. 
Nevertheless, an outcome of Coste’s model was to introduce a simple coupling law of the local counterflow vector to the GP 
equation. In the following we will use a coupling that is closely related, but different, to the one pioneered by Coste.

The paper is organized as follows. The theoretical background is given in Section 2. After first defining the uncoupled GPE 
and NSE equations in Section 2.1 the coupling terms are derived in Section 2.2. The numerical implementation is described 
in Section 2.3. Our results are contained in Section 3 and, finally, Section 4 is our conclusion.

2. Theoretical background

2.1. The uncoupled GP and NS equations

The GP equation is a partial differential equation describing the dynamics of a dilute superfluid Bose-Einstein condensate 
at zero-temperature. It applies to a complex field ψ , where |ψ |2 is the number of particles per unit volume, and reads

ih̄
∂ψ = − h̄2

∇2ψ + g|ψ |2ψ, (1)

∂t 2m
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where m is the mass of the condensed particles, h̄ the reduced Planck constant, and g the interaction constant with g =
4π ãh̄2/m and ã the s-wave scattering length.

Equation (1) can be mapped into hydrodynamic equations for a compressible fluid by the Madelung transformation

ψ(x, t) =
√

ρ(x, t)

m
exp

(
i
m

h̄
φ(x, t)

)
, (2)

where ρ(x, t) is the mass density of the fluid, φ(x, t) the velocity potential associated to the fluid velocity v = h̄
m ∇φ. This 

transformation is singular on the zeros of ψ . As two conditions are required (both real and imaginary parts of ψ must 
vanish), these singularities generically take the form of points in 2D and lines in 3D. The Onsager-Feynman quantum of 
velocity circulation around vortex lines with ψ = 0 is � = h/m. Thus, due to the multivalued nature of the velocity potential 
in the presence of vortex lines, the superflow is not irrotational. It can be proved [5], using the Madelung transformation, 
that the vorticity ω = ∇ × v is given by

ω(r) = h

m

∫
ds

dr0

ds
δ(r − r0(s)), (3)

where r0(s) denotes the position of the vortex line, δ is the Dirac delta function and s the arclength. Thus, the vorticity in 
a quantum flow is a distribution concentrated along the ψ = 0 topological line defects where v is ill-behaved (with a 1/r
divergence).

Linearizing the GP equation around a constant state ψ = �0 yields the Bogoliubov dispersion relation for density plane 
waves (ρ0ei(k·x−ωt) , with k the wave number vector):

ωB(k) =
√

gk2|�0|2
m

+ h̄2k4

4m2
. (4)

The sound velocity is thus given by

c =
√

g|�0|2/m. (5)

Dispersive effects take place for length scales smaller than the coherence length, defined by

ξ = h̄√
2gm|�0|2

. (6)

Note that ξ is proportional to the radius of the vortex core [3,4].
The GP equation conserves the total energy E , the total mass M, and the momentum P, which are defined in a volume 

V as

E =
∫
V

(
h̄2

2m
|∇ψ |2 + g

2
|ψ |4

)
d3x, (7)

M = m

∫
V

|ψ |2 d3x, (8)

P =
∫
V

ih̄

2

(
ψ∇ψ − ψ∇ψ

)
d3x, (9)

where the overline denotes the complex conjugate.
To describe the dynamics of a viscous incompressible flow of velocity vector field v we use the Navier-Stokes equations

∂tv + (v · ∇)v = − 1

ρ
∇p + ν∇2v, (10)

∇ · v =0, (11)

where ρ is the constant flow density, ν the kinematic viscosity and p denotes the pressure field that enforces incompress-
ibility (i.e. zero divergence velocity field).

The NS equations (10)-(11) conserve the total mass and the total momentum and, only for inviscid flows (with ν = 0) 
the energy is also conserved:
3
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E = ρ

∫
V

v2

2
d3x, (12)

M = ρ

∫
V

d3x, (13)

P = ρ

∫
V

v d3x. (14)

2.2. Building up the model

Our reasoning of model building is the following. In a nutshell, standard phenomenological Line Vortex Navier Stokes 
(LV-NS) models, such as those developed in [12–14], are based on the argument of cancellation of the sum of mutual 
friction force and Magnus force acting on the vortex line. The former is caused by the difference between the normal 
fluid velocity and vortex line velocity, while the latter is caused by the slip velocity, i.e. the difference between the vortex 
line velocity and superfluid velocity. This cancellation yields a phenomenological expression for the slip velocity of the 
vortex line that is added to the Biot-Savart expression for the equation of motion of the lines. The volume friction force 
that is added as a source term in the NS equation is then obtained by spatially smoothing the friction on the vortex 
line.

To apply the same logic to a Gross-Pitaevskii-Navier-Stokes (GP-NS) model, three separate ingredients are needed. The 
first one is the equivalent of the Biot-Savart velocity of vortex lines: we need a (smooth) field vreg

s (obtained from the GP 
wave function ψ ) that, when evaluated on vortex lines, will give the line velocities induced by the GP dynamics (in the 
absence of friction). Second, we need to generalize (using a volume force version) the expression of mutual friction and 
Magnus force cancellation. This computation will yield two results: (i) a line slip velocity field vslip which reduces on the 
vortex line to the standard expression used in LV-NS models and (ii) a friction force field FS N that will be added to the 
right-hand side of the NS equation. Finally, as a third ingredient, we need an expression for the coupling term in the GP 
equation that will produce the correct slip velocity vslip of vortex lines. This coupling term is closely related, but different, 
to the one pioneered in [22].

2.2.1. The regularized superfluid velocity field
The superfluid velocity vs can be simply defined by using the superfluid density ρs = |ψ |2 and the relation P = ρsvs for 

the superfluid momentum, with P defined in Eq. (9). However, with line vortices present in the GP model, the associated 
vs can also be estimated by using the Biot-Savart expression stemming from Eq. (3). Since vs has singularities on the vortex 
line, we have to introduce a regularized velocity vreg

s that is finite on vortex lines and yields the correct velocity circulation 
at large distances from vortex lines. To wit, we use the following Gaussian smoothing of the physical space field

vε
s (r) = ih̄

2m

ψ∇ψ − ψ∇ψ

ψψ + ε2ρs

,

vreg
s = (1 + ε2)F−1

(
e
− k2

k2
reg F(vε

s )

)
, (15)

where F denotes the Fourier transform and ρ s =< |ψ |2 > is the spatially averaged superfluid density. The smoothing wave-
number parameter kreg is analogous to the smoothing distance used as a parameter in LV-NS models to obtain the volume 
force added to NS equations. Parameter ε is used to avoid velocity divergence on the vortex line (where ψψ = 0) and has 
to be large enough to correctly resolve vortex lines. In practice (see Section 2.3), we set ε2 = 0.1 and kreg = 1/ξ .

The regularized velocity field allows one to define a smoothed vorticity, as the curl of the regularized velocity:

� = ∇ × vreg
s . (16)

For a straight vortex line, the effect of this Gaussian smoothing on the maximum value of smoothed vorticity, can be 
estimated to be F −1, given by the integral

F −1 = h̄

2m

1

π

⎡
⎣ ∞∫
−∞

e
− k2

k2
reg dk

⎤
⎦

2

= h̄

2m
k2

reg. (17)

We finally define the ‘normalized’ vorticity field

�̂ = F� = F∇ × vreg
s , (18)
4
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Fig. 1. Sketch of velocities acting on a vortex line.

which has a norm that is maximum and close to 1 on the vortex line and much smaller than 1 away from the vortex 
line.

It is important to emphasize that the role of the regularized superfluid velocity vreg
s is only to be used as a local 

approximation of vortex line velocities, that will be needed to build up the coupling terms acting on NS and GP equations. In 
other terms, the regularized superfluid velocity is only a derived quantity from the complex GP wave function ψ . Therefore, 
the approximation introduced in vreg

s does not affect the GP dynamics of the flow in the limit of very low temperatures, 
when no normal fluid is present.

2.2.2. Determination of the slip velocity field and volume friction force
The Magnus force density caused by vslip can be estimated starting from the momentum conservation equation [23]:

FM D = ρs vslip × (∇ × vreg
s ). (19)

This force density must be opposite to the force density acting on the NS fluid, thus

FM D = −FS N . (20)

For FS N we start from the simple phenomenological expression considering a force with longitudinal and transversal com-
ponents

FS N ∼ ρn
[
βs′ × (s′ × (vn − vL)) + β ′s′ × (vn − vL)

]
, (21)

where ρn and vn are the density and velocity of the normal fluid, vL the velocity of the vortex line, s′ the unit tangent to 
the line (see Fig. 1), and β , β ′ two phenomenological coefficients.

Using the fact that on vortex lines the vector �̂ = F� is of norm 1 and directed along the line, we postulate the following 
formula for the volume force, equivalent to Eq. (21):

FS N = ρn
[

B�(∇ × vreg
s ) × (F (∇ × vreg

s ) × (vn − vL)) + B ′
�(∇ × vreg

s ) × (vn − vL)
]
, (22)

with B� and B ′
� the new phenomenological constants. After replacing in (20) the expressions (19) and (22), we need to 

solve

0 = −ρs(∇ × vreg
s ) × vslip + ρn

[
B�(∇ × vreg

s ) × (F (∇ × vreg
s ) × (vn − vL)) + B ′

�(∇ × vreg
s ) × (vn − vL)

]
. (23)

Because of the coupling induced slip velocity, the line velocity vL is given by (see Fig. 1)

vL = vreg
s + vslip. (24)

Therefore (23) becomes

0 = −ρs (∇ × vreg
s ) × vslip

+ρn
[

B�(∇ × vreg
s ) × (F (∇ × vreg

s ) × (vn − vreg
s − vslip)) + B ′

�(∇ × vreg
s ) × (vn − vreg

s − vslip)
]
. (25)

A general remark on the equation to solve for vslip is that it involves two vectors fields that are obtained from the normal 
and superfluid components: the counterflow (see Fig. 1)

w = vn − vreg
s , (26)
5
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and the (regularized) superfluid vorticity � defined in (16). Recall that � is aligned, on vortex lines, to the vector s′ tangent 
to the line. Supposing that w is not aligned with �, we define the component of w perpendicular to the vortex line (see 
Fig. 1)

wp =

⎧⎪⎨
⎪⎩

w − w · �̂
|�̂|2 �̂, if |�̂| > 0,

w, if |�̂| = 0.

(27)

Note that for 2D configurations, since �̂ is perpendicular to w, Eq. (27) naturally simplifies to wp = w for all regions of the 
flow. We infer from (27) that a natural vector basis is (�, wp, � × w).

Using these variables, Eq. (25) becomes

0 = −ρs � × vslip + ρn
[

B�� × (F� × (w − vslip)) + B ′
�� × (w − vslip)

]
, (28)

which is the same as

0 = −ρs � × vslip + ρn
[

B�� × (F� × (wp − vslip)) + B ′
�� × (wp − vslip)

]
. (29)

After some elementary algebraic manipulations (see details in Appendix A), we obtain closed expressions for the mutual 
friction, the Magnus force and the slip velocity vslip. The latter is presented in the following convenient form

vslip = U�wp + V��̂ × w, (30)

with �̂ defined in (18) and

U� =
ρn

(
B2

� |�̂|2ρn+B ′
�

(
ρs+ρn B ′

�

))
B2

� |�̂|2ρ2
n + (

ρs+ρn B ′
�

)2
, (31)

V� = B�ρnρs

B2
� |�̂|2ρ2

n + (
ρs+ρn B ′

�

)2 . (32)

Note that the dimensions of the fields in the above expressions are (with L, T and M denoting units of length, time and 
mass): [vslip] = LT −1; [�] = [∇ ×vreg

s ] = T −1; [F ] = T , thus [�̂] = 1 and [ρ] = ML−3. In Eq. (19), FM D is a force per volume: 
[FM D ] = ML−2T −2. The same dimension is obtained in Eq. (22) for FS N because of (20): [FS N ] = ML−2T −2. By inspection, 
we conclude that the following coefficients are dimensionless: B� , B ′

� , U� , V� .
To summarize our results, vslip is obtained from (30)-(31)-(32) and the final expression of the friction force results from 

(20), (19) and (22) as

FS N = ρs � × (U�wp + V��̂ × w)= ρs � × (U�w + V��̂ × w), (33)

where we used that � × wp = � × w, a relation that can be easily inferred from (27).

2.2.3. Definition of coupling terms in the GP equation
Expression (33) gives the smooth friction force field to be added to the right-hand side of the NS momentum equation 

(10). It is apparent by inspection that the U� term corresponds to a force normal to the counterflow w and to a slip velocity 
parallel to w, while the V� term corresponds to a force parallel to w and a slip velocity perpendicular to w. Therefore, on 
physical grounds, we expect the V� term to remove energy from the GP dynamics (and transfer it to the NS flow) while the 
U� term is expected just to change the longitudinal speed of a vortex. This point will be important in our definition of the 
GP coupling term.

We still need to find a way to implement the slip velocity (30) into the GP equation (1) in a way that will make the 
vortex lines move with an additional velocity vslip. For this purpose, we consider the vortex solution of the stationary GP 
equation [3]. In 2D polar coordinates (x = r cos(θ), y = r sin(θ)) this solution representing a positive or negative vortex 
placed at the origin is

ψv = R(r)e±iθ , (34)

and satisfies

0 = − h̄2

2m
∇2ψv + g|ψv |2ψv . (35)

The time-evolution of this vortex advected by a constant vector field Uadv is described by the partial differential equation

∂tψ + Uadv · ∇ψ = i

(
h̄ ∇2ψ − g |ψ |2ψ

)
, (36)
2m h̄

6
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with solution

ψ(r, t) = ψv(r − tUadv). (37)

Consider now the advection velocity

Uadv⊥ = ±êz × Uadv , (38)

where êz denotes the unit vector in the z direction, and the imaginary-time dynamics

∂tψ − iUadv⊥ · ∇ψ = i

(
h̄

2m
∇2ψ − g

h̄
|ψ |2ψ

)
. (39)

Setting Uadv = (cos(θadv), sin(θadv )) and using space and time Taylor series expansions in both positive and negative vortex 
cases, the vortex position (δx, δy) for short times δt is given by the solution of the equation

(δx + iδy − eiθadv
δt)

dR

dr
(0) = 0, (40)

showing that the position of the vortex is indeed moving with velocity Uadv .
Thus, there are two different ways to move vortex lines in the GP framework with real advection velocity Uadv , by adding 

a term which is either real (36) or imaginary (39).
The first approach (36) corresponds to that suggested in [22] and is best suited for non-dissipative processes of the GP 

type. Coste [22] coupled a vector v field to GP dynamics (1) through the following substitutions

∇ → ∇ + i

2α
v, (41)

where the short-hand notation α = h̄
2m was used. The new gradient is similar to the covariant gradient ∇ + iA used in 

magnetic Ginzburg-Landau models, with A the electro-magnetic potential vector field [24]. We notice that

α∇2 → α∇2 + iv · ∇ + i

2
(∇ · v) − v2

4α
, (42)

where the divergence term in the right-hand side of (42) enforces mass conservation in the modified GP equation, which 
becomes

−i∂tψ = α∇2ψ + iv · ∇ψ + i

2
(∇ · v)ψ − v2

4α
ψ − g

h̄
|ψ |2. (43)

Note that, for constant v, this is a simple Galilean boost with speed v. Indeed, recall that the Galilean invariance of the 
GP equation explicitly reads:

ψ(x, t) → ψ(x − Uadvt, t)exp

(
i

(
Uadv

2α
· x − (Uadv)2

4α
t

))
, (44)

where Uadv is the constant velocity of the boost. This transformation maps any solution ψ(x, t) of the GP equation into 
another solution with associated velocity and density fields that are Galilean transforms of those associated to ψ . Thus, 
with ψv (x) denoting as before a time-stationary vortex line solution of the GP equation, the initial data ψv (x) exp(i Uadv

2α · x)

corresponds to a vortex translating with (uniform) velocity Uadv .
The second approach (39) is new and related to the damped Schrödinger/Gross-Pitaevskii equation [25], introducing a 

dissipative dynamics of the Ginzburg-Landau type. In [3], an initial data for the GP equation consisting of an array of vortex 
lines moving at short times with given large-scale velocity field Uadv was prepared by finding a stationary solution of the 
Advective Real Ginzburg-Landau Equation (ARGLE):

∂tψ = α∇2ψ + (ρs − g

h̄
|ψ |2)ψ − iUadv · ∇ψ − (Uadv)2

4α
ψ. (45)

A solution to (45) corresponds to a minimum of the associated (modified) GP energy functional:

EARGLE [ψ, ψ̄] =
∫ ⎛

⎝α

∣∣∣∣∣∇ψ − i
Uadv

2α
ψ

∣∣∣∣∣
2

+
( g

2
|ψ |4 − |ψ |2

)⎞
⎠ d3x. (46)

We note that the advection term in the ARGLE Eq. (45) has opposite sign to the advection term in (39). This means, 
heuristically, that in an ARGLE-converged stationary state with vortices, the motion that would be created by all vortices is 
equally balanced by the ARGLE advection term.
7
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Based on these mathematical-physical observations, we conclude that is necessary to split the slip velocity vslip , defined 
in Eq. (30), into v‖

slip = U�wp and v⊥
slip = V��̂ × w. For the coupling with GP equation we use the approach (36) with 

Uadv = v‖
slip and (39) with Uadv⊥ given by (38). Note that in our case Uadv⊥ = ±(± �̂

|�̂| ) × (V��̂ × w) = V�|�̂|wp .

Finally, the expression that has to be used for v in the modified GP equation (43) is

vcpl
slip = (U� + iV�|�̂|)wp . (47)

Implemented in this way, the coupling corresponding to the perpendicular speed dissipates energy, as it should be, because 
of the work of the friction force.

It is interesting to comment on the behavior of the model in regions of low superfluid vorticity. Formula (27) for wp

avoids division by zero if |�̂| = 0. However, if |�̂| takes very low values (i.e. we are very far from vortex lines) the formula 
(27) will generate noise in values of the velocity wp , by forcing it to be perpendicular to �̂. Note that this problem does 
not arise for 2D flows for which we use directly that wp = w. The friction force FS N is also not affected by the noise in 
wp , since it finally depends (see Eq. (33)) only on the counterflow w. Furthermore, following Eq. (47), the noise in wp can 
generate noise in values of vcpl

slip in regions far from vortices. We note from (47) that in such regions vcpl
slip ≈ U�wp and thus 

only the real part of the complex slip velocity could be affected by noise. In the limit �̂ = 0 we obtain from (31) that 
U� ≈ ρn/ρs B ′

� , which is small, since B ′
� takes low values. It is possible to remove the noise in values of wp by using instead 

of Eq. (27) the following regularized formula

wp = w − w · �̂
|�̂|2 + εp

�̂, (48)

which could be applied in all regions of the flow (the division by zero is avoided). As expected from the analysis above, 
using small values for the constant εp in (48) will not affect the dynamics of the flow. All numerical tests in this paper were 
run with the two versions of the definition of wp (either Eq. (27) or Eq. (48) with εp = 10−10) and no noticeable differences 
were observed in the (qualitative and quantitative) analysis of the obtained flows.

As a final remark, we note that for 2D configurations, Eqs. (27) and (48) are perfectly equivalent since w · �̂ = 0. We 
recall that the main simplification of the model in the 2D case is that wp = w, which has to be applied for definitions of 
the slip velocity vslip (30) and final complex coupling slip velocity vcpl

slip (47).

2.3. Numerical coupling algorithm

We start by solving the modified Navier-Stokes equations written in the form:

∂tvn + (vn · ∇)vn = − 1

ρn
∇p + νn∇2vn + 1

ρn
FS N ,

∇ · vn = 0, (49)

where

FS N = ρs (∇ × vreg
s ) × (U�wp + V��̂ × w), (50)

with w = vn − vreg
s , wp = w − w·�̂

|�̂|2 �̂ and U� and V� given by Eqs. (31) and (32), respectively. Fields vreg
s and �̂ given by Eq. 

(15) and (18), respectively, realize the coupling with the modified GP equation (43) in which v = vcpl
slip from Eq. (47).

A last ingredient is necessary for the coupling model. Given that the normal fluid is assumed incompressible and that 
the hydrodynamic analogy of the GP equation gives a compressible fluid, we need to ensure the compatibility of the two 
flows and thus damp acoustic density waves in the GP flow. A standard model is the so-called damped Gross-Pitaevskii 
equation [26] using a dissipation term controlled by a small dimensionless parameter ηD . We thus use the following final 
modified GP equation:

∂tψ = i

⎛
⎝α∇2ψ − γ (|ψ |2 − ρs)ψ − 1

α

(vcpl
slip)2

4
ψ

⎞
⎠

− (vcpl
slip · ∇)ψ − 1

2
(∇ · vcpl

slip)ψ

+ ηD(α∇2ψ − γ (|ψ |2 − ρs)ψ + μψ). (51)
8
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Parameters α = h̄
2m and γ = g

h̄ are determined as usually from c (see Eq. (5)) and ξ (see Eq. (6)), with |�|20 = ρs . Note that 
the value of α should be of order of the normal viscosity νn . The initial-data wave function is normalized to |ψ |2 = ρs . The 
term μ is introduced to ensure mass conservation in the modified GP equation.

The final system of coupled equations (49) and (51) is advanced in time using a fourth-order Runge-Kutta method (with 
implicit discretization of Laplacian operators). Fourier-spectral space discretization is used for both equations. The coupling 
algorithm was implemented in the framework of the modern parallel (MPI-OpenMP) numerical code called GPS (Gross-
Pitaevskii Simulator) [27]. The GPS code was initially designed as a spectral parallel solver for the GP equation using various 
time-integration methods (Strang splitting, relaxation, Crank-Nicolson). It was recently used to simulate quantum turbulent 
flows [6]. The Navier-Stokes solver was added to the GPS code using standard Fourier pseudo-spectral method [28]. Only 
one external library, FFTW [29], was required for the computation. A mandatory test of the new solver was to check the 
energy conservation in the GP part of the code. In the absence of the normal fluid (setting Btab = B ′

tab = 0), 3D tests of 
the vortex ring evolution or reconnection of vortex rings (see Section 3.2) showed that the energy (7), decomposed as in 
[3,6,30], is conserved by the Runge-Kutta scheme.

The coupling model has several coefficients that have to be fixed accordingly to the physics or be adjusted numerically. 
To give the model a physical background, the friction coefficients U� and V� were linked to tabulated experimental friction 
coefficients Btab and B ′

tab used in the physical literature for helium II. Equivalence relations between friction coefficients are 
detailed in Appendix B. In the following, we prefer to set test cases using realistic values for Btab and B ′

tab . Normal ρn and 
superfluid ρs mass densities, the normal fluid viscosity νn are also fixed based on the physics of helium II, depending on 
the intermediate temperature between 0 and 2.17 K.

The model also includes a few numerical coefficients that have to be prescribed. These extra coefficients are the two 
smoothing parameters ε2 and kreg used in the definition of vreg

s (15), and the dissipation coefficient ηD in (51). On dimen-
sional grounds, ε2 has to be a small number, kreg has to be proportional to ξ−1 (the inverse of the healing length) and ηD
to the physical friction coefficient Btab . Remembering that ε2 multiplies ρ S (which value is close to 1), it is consistent to 
use ε2 = Cε , with Cε a small value constant. We set the second coefficient in a similar way, kreg = Ckξ

−1, with Ck ≤ 1 (as 
commonly set in simulations of GP quantum turbulence). The values of constants Cε and Ck will be adjusted in the next 
section by numerical tests reproducing the evolution of quantized vortices in a normal fluid.

3. Numerical results

We use in this section classical cases of vortex dynamics to numerically validate the model. We adopt the following 
methodology:

• The first preliminary test is more qualitative and intended to check that the coupling model produces the cor-
rect displacement of a stationary 2D quantized vortex array. The vortex crystal defined by [30] is formed by two 
positive and two negative vortices in a 2D domain [0, 2π ]2, with center coordinates ( π

2 , π2 ) and ( 3π
2 , 3π

2 ) for the 
positive ones, and ( 3π

2 , π2 ) and ( π
2 , 3π

2 ) for the negative vortices. This symmetric crystal arrangement has the prop-
erty that vreg

s = 0, and consequently vL = vslip (see Fig. 1). After obtaining the initial state of the crystal by solv-
ing the ARGLE equation (45) with Uadv = 0, it is possible to impose a constant velocity vn to the normal fluid 
(i.e. the Navier-Stokes equations are not solved) and monitor how the crystal is deformed. For vn directed fol-
lowing the x-axis, testing only the real part of (47), the crystal remains stable and is translated by vslip. When 
testing the imaginary term in (47), the crystal is deformed and a superfluid velocity vreg

s appears. The obtained 
short term behavior (pictures not shown) of the vortex crystal corresponds to this expected motion and thus con-
firms that the coupling model gives the correct displacement of quantized vortices in an imposed constant normal 
flow.

• The second numerical test is aimed at finely tune the parameters of the model (ε2 , kreg and ηD ) for a vortex configu-
ration with non-trivial vreg

s . For this purpose, we use the case of a 2D vortex dipole for which analytical solutions are 
available. The one- or two-way GP-NS coupling could be tested using this benchmark. This case is described in detail 
in Sec. 3.1.

• Once the values of the parameters are fixed, we test the complete coupling model by simulating the 3D dynamics of a 
superfluid vortex ring moving in a normal fluid. We then compare the results with those obtained by LV-NS coupling 
methods. We describe in Sec. 3.2 the case of a single vortex ring and the case of the head-on collision of two vortex 
rings, moving in a normal fluid.

3.1. 2D superfluid vortex dipole and determination of model coefficients

We consider a superfluid vortex dipole in a periodic domain [0, 2π ]2. The positive vortex (of circulation � = h
m = 4πα) 

is initially centered at (x+, y+) = (x0, π + R0
2 ) and the negative vortex (of circulation −�) at (x−, y−) = (x0, π − R0

2 ). The 
dipole is moving along the x-axis, symmetrically to the center line y = π . Parameters x0 and R0 define the initial streamwise 
position of the dipole and its initial radius, respectively. In absence of normal fluid, the superfluid dipole translates in a 
periodic domain with known velocity [31]:
9



us = usex, us ≈ �

4π

(
1 + cos(d)

sin(d)
+ d

π

)
, (52)

where d = 2R = y+ − y− is the distance between vortices. If a constant normal fluid velocity is imposed along the stream-
wise direction (un = unex), the balance of forces acting on the dipole lead to the following analytical expressions for the 
horizontal ẋ(t) and vertical Ṙ(t) velocities describing the dynamics of the dipole (see details in Appendix C):

ẋ(t) = γ 2
0 ρsωs(un − us)

(γ 2
0 + (γ ′

0 − ρsωs)2)(ρsωs − γ ′
0)

+ usρsωs − γ ′
0un

ρsωs − γ ′
0

, (53)

Ṙ(t) = γ0ρsωs

γ 2
0 + (γ ′

0 − ρsωs)2
(un − us), (54)

where γ0, γ ′
0 are two physical parameters related to the temperature and ωs = (∇ × us)ez . Solution (53)-(54) is used in the 

following to finely tune the parameters of the coupling model.

3.1.1. One-way GP-NS coupling
We start by considering the one-way GP-NS coupling. The NS equations are not solved and we take un = 0, which gives 

simpler relations for the analytical solution (53)-(54). The superfluid vortex dipole is initially generated using the method 
suggested by [32] to impose the atomic density and the phase of the wave function. This case allows us to assess on the 
effect of the three parameters of the model:

• The regularization wave-number kreg is necessary in Eq. (15) to obtain a smooth velocity vreg
s and corresponding smooth 

vorticity � in Eq. (16). It acts like a filter by smoothing the superfluid velocity and slightly diffusing the vorticity in 
the surrounding area of a vortex, which is the zone where the coupling force term is computed. The choice of the 
regulation length scale 1/kreg was found to be critical to balance the accuracy and validity of the numerical simulation. 
If kreg is too large (i.e. the vorticity around a vortex line is not smooth enough), the results could be more accurate, 
but the simulation might be unstable because of numerical oscillations (wiggles). On the other hand, if kreg is too 
small, the numerical results are stable, but the accuracy is diminished. A trade-off between these two effects thus 
should be found. Figure 2 (a) shows that by decreasing kreg, the vortices of the dipole approach to each other with 
an increasing rate. We fixed kreg = 1/ξ , considering that a regularization length scale of the order the vortex core is 
physically reasonable.

• The small parameter ε2 in Eq. (15) is also needed to avoid the singularity of the superfluid velocity when the vortex 
line passes near a mesh node (as ψψ is zero on the vortex line). We took ε2 = 0.1 to ensure that the corresponding 
effective regularization length 0.31ξ is smaller than the regularization length introduced by kreg.

• The dissipation parameter ηD was introduced in the GP equation to damp sound (pressure) waves and thus ensure the 
compatibility of the model with the incompressible flow assumption for both normal and superfluid. This dissipation is 
also affecting the intensity of the coupling force, which suggests that is reasonable to assume that ηD is proportional to 
Btab . Figure 2 (b) compares the numerical results with the analytical solution with different ηD . When setting ηD = 0, 
we found that the two vortices of the dipole do not approach to each other fast enough and the gap between their po-
sitions do not evolve any more after reaching the value of approximately 10ξ . When ηD is increased, vortices approach 
to each other in a increasing rate. The parameter ηD was finally fixed to the value 0.02Btab , for which the numerical 
solution fits perfectly to the analytical solution. When Btab = B ′

tab , the value ηD = 0.01Btab is also a good choice for the 
dissipation constant.

Figure 2 (c) shows that using the values ε2 = 0.1, kreg = 1/ξ and ηD = 0.02Btab , the numerical results fit perfectly with 
the analytical solution for different coupling force coefficients Btab and B ′

tab . Figure 3 offers a final validation of the values 
found for the parameters of the model by depicting the time trajectories and time evolution of the radius of the dipole for 
typical values of coupling force coefficients Btab = 0.4 and B ′

tab = 0.1 (that will be used in the next sections).

3.1.2. Two-way GP-NS coupling
We now simulate the time evolution of the same 2D dipole, but with the full two-way GP-NS coupling. The parameters 

of the model are kept the same as determined from the one-way coupling. The difference between the two types of coupling 
is visible in Fig. 4. When considering the coupling force in the NS equations (two-way coupling), the vortices of the dipole 
approach to each other with a reduced rate. This was expected, since the moving vortex dipole generates, through the 
coupling force, a normal fluid velocity (un �= 0) that finally counteracts the mutual friction. The configuration of the flow is 
illustrated in Fig. 5 presenting snapshots of the normal fluid vorticity and streamlines, together with the identification of the 
superfluid vortices by iso-contours of low-atomic density. We observe a triple-vortex-pair structure consisting of a pair of 
superfluid anti-vortex and two pairs of anti-vortex of normal fluid: the first one is surrounding the superfluid vortices and 
rotates in the same direction, and the second one is adjacent to superfluid vortices and rotates in the opposite direction.
The streamlines show how the normal fluid is entrained by the motion of the superfluid vortex pair. By comparing the two 
snapshots, we can also observe that vortices move towards each other while translating downstream.
M. Brachet, G. Sadaka, Z. Zhang et al. Journal of Computational Physics 488 (2023) 112193
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Fig. 2. 2D evolution of a superfluid vortex dipole. One-way GP-NS coupling, with un = 0. Time evolution of the half distance between the two vortices 
normalized by the size of the vortex core ξ . Solid lines represent the analytical solution. (a) Results for three values of the smoothing wave number kreg

and common values Btab = 0.6 and B ′
tab = 0.1. (b) Results for three values of the dissipation parameter ηD and common values Btab = 0.6 and Btab = 0.1. 

(c) Results for kreg = 1/ξ , ηD = 0.02Btab , and three different choices for the coupling force parameters Btab and B ′
tab .

Fig. 3. 2D evolution of a superfluid vortex dipole. One-way GP-NS coupling, with un = 0. Simulation with fixed parameters: Btab = 0.4, B ′
tab = 0.1, d/ξ = 53, 

N = 256, k−1
reg = ξ , ηD = 0.02Btab . (a) Trajectories of the two vortices. (b) Time evolution of the half distance between the two vortices normalized by the 

size of the vortex core.

Fig. 4. 2D evolution of a superfluid vortex dipole. Time evolution of the half distance between the two vortices normalized by the size of the vortex core 
ξ . Comparison between (−  −) one-way coupling (un = 0) and (−�−) two-way coupling (un �= 0) for different physical parameters (a): Btab = 0.4, B ′

tab = 
0.1, ηD = 0.02Btab , (b): Btab = 0.4, B ′

tab = 0.4, ηD = 0.01Btab . Common parameters of the model: d/ξ = 53, N = 256, k−1
reg = ξ .
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Fig. 5. 2D evolution of a superfluid vortex dipole. Two-way GP-NS coupling. Illustration of the triple-vortex structure of the flow. The entrained normal fluid 
is represented by its vorticity contours (colors) and streamlines (arrow black lines). Superfluid vortices (white circles) are identified by an iso-contour of 
low atomic density (0.5 |ψ |2max). Snapshots of the flow for time instants: (a) t=0.24, (b) t=24. Parameters of the simulation: Btab = 0.4, B ′

tab = 0.1, ηD = 0, 
d/ξ = 53, N = 256, k−1

reg = ξ . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.2. 3D superfluid vortex ring

The triple-vortex structure observed in the 2D simulation of a vortex dipole is similar to that observed in the 3D flow 
generated by a superfluid vortex ring moving in a normal fluid [13,14,33]. We use this case to validate in 3D our full 
coupling GP-NS coupling model. The initial superfluid vortex ring is generated using Padé approximations and the ARGLE 
procedure [6]. The normal fluid is initially at rest.

Figure 6 shows snapshots of the time evolution of the vortex ring for different physical parameters Btab = B ′
tab (panels a, 

b) and Btab > B ′
tab (panels c, d). The superfluid vortex ring (in black) moves in the x-direction from left to right and sweeps 

surrounding normal fluid due to the action of the coupling force. Two normal fluid vortex rings with opposite circulations 
are thus created, an outer one with large radius (in blue) and an inside smaller vortex ring (in red). The overall dimension of 
this triple-vortex rings structure reduces while moving downstream. We thoroughly investigated the influence of the values 
of physical parameters on the topology of the triple-vortex. When Btab ≈ B ′

tab the small inner normal vortex ring (in red) 
travels at the rear of superfluid ring, while for Btab > B ′

tab it is placed slightly in front of the superfluid ring.
The triple-vortex ring structure illustrated in Fig. 6 is very similar to that recently found by LV-NS coupling models using 

vortex filaments for the superfluid and different NS solvers for the normal fluid [14,33]. For a more detailed comparison 
with LV-NS methods, we simulated the evolution of the superfluid vortex ring for temperatures ranging between 1.3 K and 
2 K, as in [17]. Coefficients Btab and B ′

tab for each value of the temperature were calibrated using data from [34]. The time 
evolution of the radius of the vortex ring shown in Fig. 7 is similar to that reported in [17]. The vortex ring radius shrinks 
more rapidly if the temperature is increased, since large temperatures imply larger friction forces and dissipation. Note, 
however, that the scales of the flow are not the same and in our simulations the computational box is much smaller than 
in LV-NS methods (see the discussion in Section 4).

To emphasize the advantage of our GP-NS coupling to describe vortex interactions in superfluids without any phe-
nomenological model, we also simulate the head-on collision of two superfluid vortex rings. In this case, superfluid vortex 
lines become distorted and their reconnection implies the exchange of parts of the lines and the formation of new tan-
gled structures. This process is illustrated in Fig. 8. We use the same parameters as for the vortex ring case presented in 
Fig. 6 (c, d). Two vortex rings are seeded in the initial condition, with the same radius and opposite propagation directions. 
Vortex centers are shifted along the vertical axis, as in the recent simulation by [33], using LV-NS coupling methods. The 
mutual induction deforms the vortex rings when they approach to each other (Fig. 8a). The interaction (Fig. 8b) consists 
in the exchange of parts of each vortex line. After reconnection (Fig. 8c) the two new vortex rings are distorted and con-
tinue their movement following their original direction. This complex interaction of superfluid vortex rings trigger in the 
normal fluid the formation of two pairs of normal vortex rings, that are attached to the quantized vortex ring and undergo 
the well-known cut-and-connect reconnection mechanism for viscous NS vortex tubes [35,36]. The obtained image of vor-
tex interaction is qualitatively similar to that obtained in [33] using phenomenological models for vortex reconnection, but 
there are differences. In particular, the repulsive motion observed when the two vortex ring are getting closer and before 
the connection is more intense than in LV-NS simulations. This affects the stretching of the normal fluid trapped between 
the two vortex rings. We recall that the superfluid vortex dynamics in our model obeys the GP equation, without any 
phenomenological assumption on the reconnection process.
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Fig. 6. 3D evolution of a superfluid vortex ring in a normal fluid initially at rest. Snapshots for two time instants. Physical parameters ρn/ρs = 1, Btab =
B ′

tab = 0.4, ηD = 0.035Btab (panels a, b), Btab = 0.4 > B ′
tab = 0.1, ηD = 0.05Btab (panels c, d). Illustration of the triple-vortex structure. The superfluid vortex 

ring (in black) is identified by an iso-surface of low atomic density (0.5 |ψ |2max). The two counter-rotating normal vortex rings are identified by iso-surfaces 
of normal fluid azimuthal vorticity: 0.03 for the blue outer ring and (−0.03) for the red inner ring. The streamlines in the normal fluid are also drawn. 
Mesh resolution 1283.

Fig. 7. 3D evolution of a superfluid vortex ring in a normal fluid initially at rest. Time evolution of the vortex ring radius for five different temperatures.

4. Conclusion

Recent models for the numerical simulation of two-fluid quantum flows (like helium II) were focused on coupling Navier-
Stokes solvers for the normal fluid with vortex filaments methods for the superfluid fraction [14,33]. These models consider 
that the superfluid dynamics is essentially described by line-vortex interactions (Biot-Savart law) and thus referred to as 
LV-NS models. The resulting main drawbacks are that vortex nucleation is absent from the description and superfluid vortex 
reconnections are necessarily based on phenomenological assumptions. While improved vortex reconnection algorithms 
[15,16] can solve the second drawback, the absence of vortex nucleation prevents the direct application of LV-NS models 
to flows where vortices are generated by boundaries or obstacles [18]. We presented in this paper a model that links the 
Navier-Stokes (NS) normal flow dynamics to the Gross-Pitaevskii (GP) description of the superfluid fraction. The advantage 
13
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Fig. 8. 3D head-on collision of two superfluid vortex rings in a normal fluid initially at rest. Snapshots for three time instants. Physical parameters ρn/ρs = 1, 
Btab = 0.4, B ′

tab = 0.1, ηD = 0.05Btab . Illustration of the structure of vortex reconnection. The superfluid vortex ring (in black) is identified by an iso-surface 
of low atomic density (0.2 |ψ |2max). The two counter-rotating normal vortex rings are identified by iso-surfaces of normal fluid azimuthal vorticity: 0.05 for 
the blue outer ring and (−0.05) for the red inner ring. The streamlines in the normal fluid are also drawn. Mesh resolution 1283.

of the model is that superfluid vortex dynamics is accurately and naturally described by the GP equation, as universally 
accepted in the literature. The new GP-NS coupling model is compatible with physical concepts (mutual friction force, 
source term in NS) used in LV-NS models, but redefined in the framework of the GP superfluid dynamics. The modified GP 
equation follows some ideas introduced in [22] to describe the compressible two-fluid liquid helium II, but it introduces 
new concepts: the regularized superfluid vorticity and velocity fields, the covariant gradient operator in the GP equation 
based on a slip velocity respecting the dynamics of vortex lines in the normal fluid.

The new GP-NS coupling model was implemented in a pseudo-spectral Fourier spectral code. Intensive tests validated the 
new numerical system against well-known benchmarks for the dynamics of different types or arrangements of quantized 
vortices (vortex crystal, vortex dipole and vortex rings) evolving in a normal fluid. The simulation of superfluid vortex 
head-on collision proved the ability of the method to account, without any phenomenological assumption, on the complex 
vortex interaction and reconnection. The range of scales for which the present method is applicable is complementary to 
that used in VL-NS models. In our GP-NS approach, we have to resolve flow scales less than the vortex core size, which 
imposes an obvious computational limitation in the size of the computational box. In VL-NS models, the computational grid 
has to resolve the inter-vortex distance, but do not need to resolve the vortex core (vortex lines are singularities of zero 
thickness). Simulations with VL-NS models can therefore cover scales similar to that of experiments, while the GP-NS model 
offers a magnified view of the flow at the scale of the vortex core size. Our model is thus prevented to describe full scale 
experiments, but it offers the possibility to revisit many fundamental phenomena occurring in two-fluid quantum flows that 
were established using the vortex filament method for superfluids (see the recent review [26]): reconnections of superfluid 
vortex lines in a NS fluid, movement of superfluid vortex bundles in a normal fluid, etc.

Another fundamental question is whether the present GP-NS model could be quantitatively applied to describe two-fluid 
helium quantum flows. First, in order to correctly describe superfluid liquid helium, we need a correct equation of state and 
a dispersion relation also involving rotons excitations. This implies that the GP equation needs to be extended by including 
non-local and higher order nonlinear terms [37–39]. Second, the NS description itself for the normal fluid will be valid only 
for scales of the order, or smaller than the thermal excitation mean free path. For low temperatures the mean free path of 
the rotons and phonons becomes ballistic (for a detailed discussion of the involved length scales, see [14]), which indicates 
that NS equation should be replaced with a Boltzmann equation. A quantitative self-consistent description of the two-fluid 
helium flow for all range of temperatures is still an open problem. It remains to be seen if such a complete approach will 
provide similar results to those obtained in the present simplified GP-NS physical framework.
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Appendix A. Expression of the slip velocity

To solve Eq. (29), we use that vslip is perpendicular to the vortex line: vslip · � = 0. We obtain:

−ρsvslip + ρn(B�(F� × (wp − vslip)) + B ′
�(wp − vslip)) = 0, (A.1)

or

−(ρs+B ′
�ρn)vslip − ρn B� F� × vslip = −ρn(B� F� × w + B ′

�wp). (A.2)

Setting

vslip = U�wp + V� F� × w, (A.3)

we obtain that

− (ρs+B ′
�ρn)(U�wp + V� F� × w)

− ρn B� F� × (U�wp + V� F� × w)

= −ρn(B� F� × w + B ′
�wp) (A.4)

or, using that � × (� × w) = � × (� × wp) = −� · � wp ,

− (ρs+B ′
�ρn)(U�wp + V� F� × w)

− ρn B� F U�� × wp + ρn B� F V� F� · � wp

= −ρn(B� F� × w + B ′
�wp). (A.5)

Taking the inner product with wp and � × w, we infer that

−(ρs+B ′
�ρn)U� + ρn B�V� F 2� · � = −ρn B ′

�, (A.6)

−ρn B�U�−(ρs+B ′
�ρn)V� = −ρn B�. (A.7)

The final solution is

U� = ρn
(

B2
� F 2� · �ρn+B ′

�

(
ρs+ρn B ′

�

))
B2

� F 2� · �ρ2
n + (

ρs+ρn B ′
�

)2
, (A.8)

V� = +B�ρnρs

B2 F 2� · �ρ2 + (
ρ +ρ B ′ )2

. (A.9)

� n s n �
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Appendix B. Expressions of friction coefficients

Friction coefficients U� and V� in Eq. (30) can be related to physical friction coefficients tabulated for superfluid helium II 
[34]. We recall that three different scales appear in our model: the healing length ξ that is also the scale of the vortex core, 
the smallest normal fluid length (the phonon/rotons mean free path) λ and the inter-vortex distance �. In LV-NS models, 
since a vortex is a filament, ξ = 0 and λ < �. In HBVK models, the superfluid vorticity is averaged over a length scale larger 
than �. In our description, we average over some intermediate scale l, supposing that ξ < λ < l < �, to obtain a mesoscopic 
description of the mutual friction.

We consider the case of a uniform rotation and use the experimentally tabulated coefficients Btab and B ′
tab given by [34]. 

By averaging over the vortex array, we must identify:

Btab = ρ

ρn
V�, (B.1)

B ′
tab = ρ

ρn
U�. (B.2)

The above relations for (U� , V�) can be inverted into

B� = ρs V�

ρn

(
�̂2 V 2

� + (U� − 1)2
) , (B.3)

B ′
� = −

ρs

(
�̂2 V 2

� + (U� − 1)U�

)
ρn

(
�̂2 V 2

� + (U� − 1)2
) . (B.4)

Using the that �̂2 = 1 on vortex lines, we finally find for our coefficients B� , B ′
�:

B� = ρs
ρn
ρ Btab

ρn

(
(
ρn
ρ Btab)

2 + (
ρn
ρ B ′

tab − 1)2
) , (B.5)

B ′
� = −

ρs

(
(
ρn
ρ Btab)

2 + (
ρn
ρ B ′

tab − 1)
ρn
ρ B ′

tab

)
ρn

(
(
ρn
ρ Btab)

2 + (
ρn
ρ B ′

tab − 1)2
) , (B.6)

or

B� = Btabρρs

ρ2
n

(
B ′

tab
2 + B2

tab

)
− 2B ′

tabρρn + ρ2
, (B.7)

B ′
� =

B ′
tabρρs − ρnρs

(
B ′

tab
2 + B2

tab

)
ρ2

n

(
B ′

tab
2 + B2

tab

)
− 2B ′

tabρρn + ρ2
. (B.8)

Appendix C. Movement of a 2D vortex dipole in a normal fluid

We consider the superfluid vortex dipole described in Sec. 3.1. In a periodic domain and in absence of normal fluid, 
the superfluid dipole moves in the x-direction with the velocity given by Eq. (52) [31]. Considering that the vortices of the 
dipole are straight lines perpendicular to the movement plane (x, y), we can apply the force balance equation (20). We 
assume that the velocity induced by the vortex line is (in the vicinity of the line):

vs = usex, (C.1)

with us given by Eq. (52). Since the velocity of vortex lines is:

vL = ẋ ex + Ṙ ey, (C.2)

the tangent vector is s′ = ez and the vorticity � = ωsez , we can use Eqs. (19), (20), and (22) to obtain:

0 = ρsωsez × (vL − vs) + γ0(vn − vL) + γ ′
0ez × (vn − vL), (C.3)

with γ0 = ρn B�/F and γ ′
0 = −ρn B ′

� . Assuming that vn = unex , we separate from relation (C.3) the two linear equations 
corresponding to x and y directions, respectively:
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0 = −ρs Ṙωs + γ0(un − ẋ) + Ṙγ ′
0, (C.4)

0 = ρsωs(ẋ − us) − γ0 Ṙ + γ ′
0(un − ẋ). (C.5)

The solution is obtained in the form:

ẋ(t) = γ 2
0 ρsωs(un − us)

(γ 2
0 + (γ ′

0 − ρsωs)2)(ρsωs − γ ′
0)

+ usρsωs − γ ′
0un

ρsωs − γ ′
0

, (C.6)

Ṙ(t) = γ0ρsωs

γ 2
0 + (γ ′

0 − ρsωs)2
(un − us). (C.7)

To follow the position x(t) and radius R(t) of the dipole in time, we calculate:

x(t) =
t∫

0

ẋ(s)ds, R(t) =
t∫

0

Ṙ(s)ds. (C.8)
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