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SEDIMENT TRANSPORT MODELLING :
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Abstract. In this note we are interested in the modelling of sediment transport phenomena. We
mostly focus on bedload transport and we do not consider suspension sediment processes. We first
propose a numerical scheme for the classical Saint-Venant — Exner model. It is based on a relaxation
approach for the whole system and it works with all sediment flux function. The stability of the scheme
is investigated and some numerical tests are proposed. We exhibit that this coupled approach is more
stable than the splitting approach that is mostly used in industrial softwares. Then we derive an
original three layers model in order to overcome the difficulties that are encountered when using the
classical Exner approach and we present a related relaxation model.

1. SEDIMENT TRANSPORT MODELLING : A MAJOR ISSUE

In rivers, mean sediment discharge may represent several hundred cubic meters of gravels or silt per year.
Therefore, the sediments must be taken into account in order to predict the river bed evolutions. For hydro-
electricity managers sediment transport modelling is a major issue. Dams stop water and consequently impact
sediment transport, as well as sediment deposition may disturb water intakes or bottom gate opening, for ex-
ample see Fig. 1. Besides, in some rivers like the Loire river, water intakes of nuclear power station may be
protected against the deposition of sand. In order to understand sediment transport dynamics and to suggest
managing solutions, EDF has been working on sediment transport modelling tools for bedload and suspension
sediment transport. This work focuses on the modelling of bedload transport which refers to gravel transport
and pushes aside the transport of fine sediments by suspension.

Up to now, one very classical approach is to approximate the solid phase equation by a simplified one : the
well-known Exner equation [10]. The Exner equation is obtained by writing a mass conservation on the solid
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FIGURE 1. Example of silt deposition pattern in reservoirs (water flows from the back to the front).

phase in interaction with the fluid. There is no dynamic effect in the solid phase
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where Z is the bed elevation, Qs the bed load, p the porosity of the gravel bed. The bed load may be expressed
by empirical formulae of the form

=0,

Qs = Ag(u)|u"""u (1)
where u is the velocity in the fluid (Grass [13] formula) or Qs = f(7,) where 7, is the boundary shear stress
(see for example Meyer-Peter and Muller [18], Einstein [8] or Engelund and Fredsoe [9] formulas).

The classical fluid model is the shallow water equations. It is coupled with the solid phase by the bottom level
evolution. The coupled model stands * :

oH 0Q
E-ﬁ-% = 0, (2)
0Q 9 (Q* g,.5) _ 07
8t+8x<H+2H = 9y ®)
07  0Q.
put-p) 2 %%y 0

where () = Hu is the water discharge and H the water height.

There are two major ways to solve this three-equation system that we refer in the following as the external
and the internal coupling methods. The strategy developed at EDF-RD is based on an external coupling
method. Firstly, the hydraulic part of the system is solved by using the software MASCARET [12] and then the
computed fluid quantities are sent to the software COURLIS [4] that solves the Exner equation. The fluid part
and the solid one are coupled through the time evolution of the bottom level. In the best way, the shallow-water

IFor simplicity’s sake, equations are written for the one dimension problem in rectangular channels
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equations and the Exner equation are coupled at each time step without local iterations. EDF actual modelling
tools are used in complex cases, for example the draw-down of a reservoir with a steep slope and deep zones.
Engineers are confronted with the limitation of the codes. Fig 2 is an example of instabilities observed in the
case of a dam break calculation using an external coupling strategy (0.3s after dam break). This result is in
agreement with [7] where the authors show that, with the external coupling method, the instabilities cannot be
always avoided in supercritical regions. Thus alternative approaches must be investigated.
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FIGURE 2. Dam break over a movable bottom with a splitting approach - Free surface (top)
and Bottom topography (bottom)

In this note, we investigate two different approaches. First we consider the internal coupling approach that
consists in solving the system (2)-(4) at once with three unknowns H, @ and Z. We then have a hyperbolic
system to solve and some specific finite volume schemes have been recently developed, see [2,6]. For stiff cases
this approach seems to be more robust than the uncoupled one [7]. Here we propose a relaxation approach of
the model that allows us to deal with a large class of sediment fluxes and we construct the related relaxation
solver. For an introduction to the relaxation framework, we refer the reader to [5,15]. Second we go one step
further and we derive a new three layers model that is able to propose a more accurate modelling of the phe-
nomenon than the classical Exner approach. This new model is similar to some models introduced in [20]. We
also propose a relaxation approach for this new model.

The outline of the paper is the following. In Section 2, we introduce a relaxation approach to derive a stable
numerical solver for the classical SW-Exner model (2)-(4). Then we propose some numerical test cases in Section

3. In Sections 4 and 5 we derive the new three-layer model and we propose a related relaxation model in Section
6.

2. A RELAXATION SOLVER FOR THE SAINT-VENANT — EXNER MODEL

In this section, we consider the classical Saint-Venant — Exner model (2)-(4). Considering the internal
coupling framework, we first propose a relaxation approach for this model and then we construct the related
numerical solver. A paragraph is devoted to the stability of the relaxation model and to the well-posedness of
the relaxation solver. This work has two main motivations : first, to construct a stable solver for the numerical
simulation of model (2)-(4) ; second, to introduce the main ideas that will be used to derive the relaxation
model associated to the three layers model that is presented in the second part of the paper. The relaxation
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framework that we consider in this Section was first introduced in [17].

The hyperbolic nature of the SW-Exner model (2)-(4) strongly depends on the formula that is chosen for the
sediment flux @, [7]. Moreover the computation of the eigenvalues (that are needed if we want to compute
an approximate Riemann solver) of the system needs for iterative strategies except for very particular choices
of Qs. Here we overcome this difficulty by considering a relaxation model where we relax the sediment flux.
We also relax the fluid pressure as it is usually done for classical shallow water or Euler systems. It leads to
the introduction of two new auxiliary variables denoted II for the pressure and €) for the sediment flux. The
relaxation system finally stands as a larger but more suitable hyperbolic system since the auxiliary equations
are chosen such that all the fields are linearly degenerate. The method is well-described in [5] where in addition
a large number of classical hyperbolic solver are interpreted as relaxation schemes. In our case we finally obtain
the following model, see also [17]

%4‘% =0 (5)

D gy 0
%—?+ug—§+§% = %(LT—H) (7)

o (g_ Q)f)fmg‘; = Q.- 9) (9)

where )\ is a small positive parameter. The parameters a and b will be chosen later to ensure the stability of
the model. The main properties of system (5)-(9) are the following

e It obviously tends (at least formally) to the original SW-Exner model (2)-(4) when A tends to zero.

e It is always hyperbolic and the eigenvalues are are ordered and does not depend on the special choice
of the sediment flux Q.

e All the fields are linearly degenerate and the Riemann problem is easy to solve.

2.1. Construction of the relaxation solver

We can write system (5)-(9) on the quasi-linear form

0V + A(V)0,V = S\(V)

with
I v H 0 0 0 0
0 u 1/H g 0 0
“ 0 a2/H 0 0 >
v=| 1o |, AV)= “ v ., S = (4L
7 W) 0 0 0 0 1 V) A( 2 )
b2 ) 0

Our relaxation solver is based on a time splitting strategy that can be written in two steps. First, starting from
the physical quantities (H™, u™, Z™), we compute the auxiliary quantities (II", Q™) by

H™ 2
Hn:g( 5 ) , Qn:QS(H'rL?un)
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It can be interpreted as the solution of the following system of ODEs
oV = S\(V)
where we formally consider that A = 0. Second we consider the homogeneous hyperbolic system
0V + A(V)0,V =0 (10)

and we compute the numerical solution at the next time step by using a Godunov scheme. To do this, we have
to compute the solution Vi /2 of the associated Riemann problem at each interface

Vi if z<ay
n — % i+1/2
1+1/2(0ax) { ‘/i-i-l if > Tit1)2 (11)

The CFL condition is fixed to ensure that these interface Riemann problems do not interact

Az
A< ——m——— 12
b= max; p(A?) (12)

where p(A) denotes the largest absolute value of the eigenvalues of matrix A. Then we can define a global
solution by

7

Y(t,z) € [0, At"] x R Vet 2) = Vi ot o)X a0 (7)

where x; denotes the characteristic function of the interval I. Finally the numerical solution Vi”Jrl at the next
time step is computed by considering the mean value of this exact solution on the cell C; at time At", i.e.

1 T4 1 Tit1/2
vt = 7/ Vio1 (A" z)dx + 7/ Vig1/2(At", 2)dz.
Ti = Ti—1/2 Ja; 19 Tit1/2 — Ti Jo,

Notice that we only compute the physical values (HZ-"H, u?“, ZZ-"‘H) and that for the conservative quantities
H and Z we could also consider a more classical formula by using fluxes at interfaces

A"
|Cil

H?H =H" — (FH(‘/;+1/2(Atn7$i+l/2)) - FH(Vi—l/z(Atn,xi—lﬂ))) .

2.2. Solution of the Riemann problem

The solution of the Riemann problem (10)-(11) will depend on the relative choice of parameters a and b. To
fix the idea, we suppose in the following that the parameters a and b are such that a < b. This requirement is
not necessary and some precise bounds on parameters a and b will be given in the last part of this Section. Once
this point is clarified, the computation of the eigenvalues of matrix A is now easy and we obtain the following
ordered values

b< ¢ cu<u+t < +b (13)
UHUHUUHUH.
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The associated right eigenvectors are (with § = £1)

1
! 1
s
H? P
H? 0
2
e a2
Tupsh = H y o Tutss = a” , =10 |. (14)
2
b2 _ CL2 0
gH? 0
0
b? — a? 45 b 0
- U —
gH?3 H

We can now compute the solution to the Riemann problem where the relaxation system (5)-(9) is associated to
the initial conditions

Vi i 2<0
V(O’x)_{w it o3>0

where we suppose that the water heights H;(z) and H,(z) are bounded below by a positive constant. The
solution contains five waves, each associated to one eigenvalue (13) of the matrix A. These five waves separate
six constant states that we denote from left to right : Vj, Vi, Ve, vr, V, and V,.. It follows immediately from
the particular form of the right eigenvectors (14) that Z and € are continuous through the three internal waves.
Then Z, = Z; = Z} = Z, and we will denote this common value by Z* (resp. Q*). For u and II, they
are continuous through the intermediate u-wave and then u; = w} will be denoted by u* (resp. II*). The

twelve remaining unknowns (h;, hi, hY, By g, w*, 0y, 1, T, 10, Z%, %) are computed by using the continuity of
the remaining Riemann invariants through the a- and b-waves. For example, through the left a-wave (that is

associated to the eigenvalue u — a/h), in addition to the continuity of Z and 2, we have

2 2
a _ a a
—=u" -, I+ = =1I" + —
hy hi T hy
After some computations, it leads to the following relations for the intermediate bottom topography and sedi-
ment flux values

7 — (“’” + HL) Zr - (“l B H%) Z 1 — (% - ), (15)

and

. (ur+H%) Q, - (ul_Hil> & (”’“*HLJ (ul_’%) (Z.— 7). (16)

Then we can compute the intermediate water heights

1 1
1 1 29 ER 1 29 z
— ==+ (7, -2 — == Z,—Z" 1
J27 <Hﬁ+b2—a2(l )> ' H, <H3+b2—a2( )> ’ (17)
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and the intermediate velocities and pressure

1 1 1 1
= b — Up =Up — b =— — — |, 18
U = u; + <Hl Hl>7 U U (Hr Hr) (18)
and 1 1 1 1
M= -a(=——), O =1,-a*(———|. 1
l 1—a <Hz Hl)7 a (Hr Hr> (9)

We finally compute the internal quantities

Hl‘i’l:.[ a , _ ’al+’l_[,r 1 - _
T Z (@, — * = — —(I1, — IIy), 2
5 5 (U — ), u 5 52 ( 1) (20)
and 111 111
- = o (r*—-T1 = — — — (I - 10,). 21
H — H, pl ok Hr  H, a2 ) (21)

Note that the relaxation model can be extended to the case where one of the water height H; or H, vanishes
by adapting the method proposed in [5] for the classical shallow water system.

2.3. Stability and well-posedness of the relaxation solver

Before to implement the relaxation solver that we defined in the previous paragraphs, we have to fulfill some
basic requirements

e The relaxation model (5)-(9) is stable
e The intermediate states (15)-(21) are well-defined
e The intermediate water heights (17) and (21) are non-negative

Concerning the first point, we first have to define the notion of stability. Here we will consider that the relaxation
model is stable if the associated second order system is diffusive. This definition is classical in this context and
we refer the reader to [1] for further discussion about this point. To construct the associated second order
system, we first introduce an expansion of the auxiliary variables in power of A

I =p(H)+ I +0(\),  Q=Qs(H,u)+ X2 +O0(\?) (22)

where p(H) = gH?/2 denotes the fluid pressure. Then we introduce this expansion in the auxiliary equations
(7) and (9). This leads to

2
I, = Op(H) + udp(H) + “ﬁaxu o)

2
= P/(H)OH +up (H)0,H + T-0,u+O(N)

2

-0 = 0:Qs(H,u)+ 2ud,Qs(H,u) + (22 — UQ) 02+ O(N)

2

= 0nQ.OH + 0,Qu0u + 2udy Q0 H + 2u8,Q,0pu + (ﬁp - u2> Buz + O(N)

Then we use the physical equations (5) and (6) to obtain

-1, = 1( —H? ’( ) Ozu + O(N), (23)
H)

2

0.0 ) OpH + (—hDh Qs + uduQs) Dyt + (b2

_Ql 7

(uaHQS —u? - gauQS> 0:Z + O(X\)(24)
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Inserting expansions (22), with particular forms (23)-(24) for the first order correction, in the physical equations
(5), (6) and (8) leads to the following second order system

W + AW)O,W = N0, (D(W)D, W) + O(N\?)

with
H 0 0 0
W=1[ u |, D(W) = 0 a® — H*p'(H) 0 ,
Z wpQs — L 8,Qy  —hdpQs +ud Qs L —u? — g0,Q,

The matrix D(W) is a diffusion matrix if and only if its eigenvalues are nonnegative. It leads to the following
lower bounds for parameters a and b

a>Hy/gH,  b>+/(Hu)?+ gH20,Q, (25)

Let us make some comments on these bounds

e The bound on parameter a is the classical bound for relaxation model for barotropic Euler or shallow
water equations [21].

e The relative value of a and b depends on the local characteristic values of the flow (H,u) and then it
can not be fixed for the whole flow at once, neither in space, nor in time.

e In the low coupling case, the term that involves (s is small and the relative value of a and b only
depends on the nature of the flow : if the flow is fluvial or subsonic (Ju| < v/gH), then a has to be
larger than b and if the flow is torrential or supersonic, then b has to be larger than a.

e In the high coupling case, the parameter b has to be chosen larger than a in the most part of the flow,
(possibly) except in the zones where the Froude number is very small.

This first study ensures that the relaxation model is well-posed. In addition we have to be sure that the
related relaxation solver is also well-posed and then satisfies the two other requirements : well-posedness of the
intermediate states (15)-(21) and non-negativity of the intermediate water heights (17) and (21). Relations (15)
and (16) immediately imply

Uy — Uy
ot

The well-posedness and the positivity of the intermediate water heights leads to more complex relations and it
is not so easy to exhibit explicit bounds for a and b. Definitions (17) lead to - we recall that we suppose b > a

29H? 2gH?
— 7% -7 " (Z7* - Z 2
b a>max(a+b( l)’a—i—b( ) (27)

Note that this relation is not explicit since the value of Z* depends on the parameter b. Moreover definitions
(21) need for

a > max (\/Hl (10— ), /2, (11 - nr)> (28)

Here also the relation is not explicit since the quantities H;, H,, II;, II, and II* depends on parameters a and b.
We do not go further on this point in this note. We only remark that relations (26), (27) and (28) are obviously
satisfied for smooth solutions when the space and time steps tend to zero since the right hand sides only involve
terms of the form Au, AZ or AIL



86 ESAIM: PROCEEDINGS

3. NUMERICAL TEST CASES

In all the numerical test cases, the parameters a and b of the relaxation solver are chosen such that a < b.
To ensure this property we impose

a = max; (Hi\/gHi) , b = max (maxi (\/(qu2)2 + ng@u(QS)i) m;a)

where £ > 1. The other requirements (26)-(28) are not taken into account in the definition of the parameters
but are verified a posteriori. Then we apply the solver that is described in the previous section. A less diffusive
relaxation solver could be obtained by considering local definitions of parameters a and b and also by locally
choosing the adapted relaxation solver, knowing the relative values of a and b that fulfill requirements (25). It
needs for the solution of the Riemann problem under the hypothesis b < a.

3.1. Analytical solution

We first consider a very simple test case for which it is possible to compute an analytical solution [3]. For the
Exner law, we consider the Grass formula (1) with A, = 0.005 and m = 3. The initial data are the following :

Qo Q3
(ax + B3 2H(0,z)

Q(va) = Qo, H(va) = +g(Z<va) + H(va)) =C.

It follows from easy computations, see [3], that this solution is a stationary solution for the fluid part
Q(t,z) = Q(0,x), H(t,z) = H(0,z), vt > 0,
and that the bottom topography is given by the relation
Z(t,x) = Z(0,x) — Agat, vt > 0.

In Figure 3, we compare the numerical solution with the analytical one for two different number of grid points.
We can see that the numerical solution converges to the analytical one. Nevertheless the scheme is quite diffusive
since for a small number of point the numerical solution is quite far from the analytical one.

3.2. Dam break on movable bottom

We now consider the very classical case of a dam break over a flat bottom but we allow the bottom to
evolve in time with respect to the Exner law (4). As initial conditions, the dam is located at = 5m, with
H; = 2m upstream the dam and H, = 0.125m downstream. The topography is initially flat and the flow is at
rest u = Om/s. For the Exner law, we still consider the Grass formula (1) with the same parameters and we let
evolve in time until ¢ = 1s, for J = 4000 cells in space. The results obtained with a splitting approach where
the fluid equations and the Exner law are solved separately, presented in Figure 2 in the introduction, exhibit
the presence of numerical instabilities (with J = 400 cells in space). The results obtained with our coupled
approach are shown in Figure 4. It shows that for this kind of stiff cases the coupled approach is much more
stable. It confirms the conclusion of [7].

3.3. ”Steady” flow over a movable bump

The last numerical test case is concerned with the extension to movable bottom of the so-called ”steady flow
over a bump” experiment. Here the flow will not reach a steady state since the bump will be deformed by the
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Ficure 3. Comparison between numerical and analytical solutions for the Saint-Venant —
Exner model ; 100 (left) and 4000 (right) grid points

flow. As initial conditions, we consider a subcritical steady state over a bump for the shallow water system as
in [7], i.e.

Q(z,t=0)=0.5

Z(x,t = 0) = 0.1+ 0.1e~ @5
2

% +g(H+Z) =6.3%6

We still consider the Grass formula with the same parameters and we let evolve in time until ¢ = 30s, for
J =256 and J = 4000 cells in space. The results are presented in Figure 5. With J = 256 cells, we notice that
the scheme is very diffusive. For J = 4000 cells, we recover the result obtained in [7]. A second order accurate
extension of the scheme has to be developed to enhance the precision of the results. We then consider the same
initial conditions but with a slightly larger A, = 0.007, thus the ground is more erodible. The simulation is
ended at t = 5s. It was noticed in [7] that the splitting approach was not adapted for this test case, i.e. they
observed some oscillations. Here for J = 4000 cells, we do not observe any oscillation, see Figure 6, and the
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FIGURE 4. Dam break over a movable bottom - Free surface (top) and bottom topography (bottom)

solution is relevant. This last numerical test confirms the interest of the coupled approach since it is stable for
a large class of test cases.

J=256 J=4000
0.6 e T T 0.6
05 | ] 0.5 |
% 0.4 z,att=0s % 0.4 zpatt=0s
T zb+I-Ff att=0s T zb+l-ﬁ att=0s
X Zp att=30'S e A 2z att=30'S e
N 03 z+Hatt=30s ¥ 03t zaHhatt=30s
gel o
N N
02t 0.2 r
0.1 0.1
0 2 4 6 8 10 0 2 4 6 8 10
x [m] X [m]

FIGURE 5. Flow over a movable bump, coarse (left) and fine (right) meshes

4. A TWO PHASES NAVIER STOKES SYSTEM

The erosion phenomenon is a fluid/structure interaction problem. It can be formulated in the following way:
the displacement of a pure fluid phase that interacts with a movable bed made of a mixture between the pure
fluid phase and the static bed components, see Fig 7. The density of the mixture fluid/solid varies with respect
to the concentration of the static bed components. In the following superscripts b, s and f deal respectively
with the static bed, mobile bed and pure water layer. We also denote by H the depths of each layer, u their
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FIGURE 6. Flow over a movable bump, a more erodible bottom (A, = 0.007)

Pure water

PR c U.
Mobile bed

b Static bed

|
X

FIGURE 7. Description of the domain.

mean horizontal velocities, ¢ the sediment concentrations, p the mean density, p the dynamic viscosity and g
the gravity acceleration. The free surface is written n(z,t), the bottom topography is Z(z,t) and zs(z,t) stands
for the interface between the fluid and the mobile bed.
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4.1. The fluid part

We begin by considering the two-dimensional hydrostatic Navier—Stokes system [16] describing a free surface
gravitational flow moving over a bottom topography. We denote with x and z the horizontal and vertical
directions, respectively. The system has the form

ot optul  dpfw!

o T or e =" (29)
oplul  opl(uh)?  oplulw! op/ oxi,  o%i,
o " or 0z 0w ox o (30)
op’ PR )V

= - 31
0z Pt oz + 0z’ (31)
and we consider solutions of the equations for, see Fig. 7
t>1ty, zeR, zs(z,t) <z<nlxt).

The chosen form of the viscosity tensor is

out ouf  owf
wfo—9,f i
o W oz vz (8z+8x)’
ow’ ot owf
»f, =2uf — ¥ = (—+ =)
zz "5z 2 (6z+3x)

The fluid density pf(z,t) is assumed to be constant or to depend on the spatial and temporal distribution of
the concentration of the sediment Cf(z,t) in the fluid layer , namely

ol = p(Ch), (32)
and C/ is governed by a transport-diffusion equation

opfct . opfufCf n opfwfCt B f82C’f 4 f82C’f
ot ox 0z ~HoTge THe g2

+8, (33)

where ué is the sediment diffusivity and S the source terms (chemical reactions...).

In the previous system we may consider the Boussinesq assumption :
ol =l +epl(CT), (34)

where € is a small parameter. In that case, at the leading order, the density depends on the concentration only
in the gravity term.

4.2. The mobile bed

We also consider that the mobile bed can be modelled by the two-dimensional hydrostatic Navier—Stokes
system but with a varying density p®

op®  Op’u®  Ipw?®

o T e T o — Y ()
op*u®  0p*(u®)?  Optutw®  Op*  0%5,  O%5,
ot + Oz + 0z + or Oz 0z’ (36)
op® s 0¥I, 0%,
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and we consider solutions of the equations for, see Fig. 7
t>ty, xz€eR, Z(x,t)<z<z4(x,t).

The viscosity tensor 3° has the same form as in the fluid part. The density p®(x,t) is assumed to be constant or
to depend on the spatial and temporal distribution of the concentration of the sediment C*(x,t) in the mobile
bed, see relations (32) and (33).

4.3. The boundary conditions

The systems (29)-(31) and (35)-(37) are completed with boundary conditions. The outward unit normal
vector to the free surface n, and the upward unit normal vectors ny, and ng, respectively to the interfaces z,
and Z are given by

(B ) e (B ) e
n, = —F—— z , nj = —/————— z , J=171s,s0.
R A ()

We then denote Ez‘} the total stress tensor, which has the form:
. ) W >
J T Tz e
Y =—-pls+ ( U ) , Jj=1s.

4.3.1. Free surface conditions

At the free surface we have the kinematic boundary condition

on
a+u§%—w5:0, (38)

where the subscript 7 indicates the value of the considered quantity at the free surface.
We denote 7, the surface wind stress, for which the following expression [14] is considered:
Tw = Cpp®| V|V,

where V,, is the wind velocity, p® the air density and Cp the wind drag coefficient. Assuming negligible the air
viscosity, the continuity of stresses at the free boundary imposes

Sin, = —pn, + 7wty (39)

where p® = p®(z,t) is a given function corresponding to the atmospheric pressure and t, is the unit vector
orthogonal to n,,. Relation (39) is equivalent to

n, - Zénn = —p%, t, - Z%nn = Tw-

In the following, we will assume p® = 0.

4.3.2. Boundary conditions at the interface zs

At the interface z = z4(x,t), we impose the continuity of the normal velocity

0z 0z
f s f _ s s
Ups gy~ Wis = u?s—az — Wi (40)
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and we can define a quantity ey, that describes the exchange between the fluid and the mobile bed, see Fig. 7

_825 7 Oz § 0 Oz s 0%s

I = T T Urgg TV T T T Wiy

+ whs (41)

Moreover the continuity of stresses at the moving boundary zs also imposes the continuity of the pressure and
the continuity of tangential stresses

bps - Spnps = tro - Sings = 7y, (42)
where 7, models inter-phase drag forces which can be expressed as
— f S f s
Tfs = D(H +H )(ufs - ufs)?
where D = D(|u;s — u%,];0) is a drag function depending in general on |ujjs, — u%,|, and a set of physical

parameters o (e.g. specific densities, particle diameter), see [19] for a more complete description.

4.3.3. Boundary conditions at the bottom interface Z

At the interface z = Z(x,t), we have to impose the continuity of the normal velocity (which vanishes since
the bottom is supposed to be at rest) and we can define a quantity eys that describes the exchange between the
static and mobile beds, see Fig. 7

0z
b= ———. 43
Y (43)
For the stresses at the bottom, we consider a wall law under the form
tsb . E%nsb = Tp = K(uib, H)uzb . tsb, (44)

where tg, is a unit vector satisfying tg, - ng, = 0. Due to thermo-mechanical considerations, in the sequel we
will suppose k(u$,, H) > 0, and x(u$,, H) will be often simply denoted by . If k(u$,, H) is constant then we
recover a classical Navier friction condition.

5. A TWO-PHASE SHALLOW GRANULAR FLOW MODEL

5.1. Derivation

Let us introduce two small parameters e/ and ¢° defined by
ef = — e’ = — (45)

where ) is a characteristic dimension along 2z and h/,h*® are characteristic dimensions along the vertical axis
in the fluid and mobile bed layers respectively. We consider in this section that the shallow water assumption
is valid for the fluid and for the mobile bed. This means the models (29)-(31) and (35)-(37) completed with
boundary conditions (38)-(44) can be approximated up to O((ef)?, (¢%)?) terms by the coupled system (46)-(50)



ESAIM: PROCEEDINGS 93

Pure Water :
OH! 0
= 4 2 (gfgf L
Y + o (H'wu’) max(0, efs) + min(0, eys) (46)
oH'w) o

L

Z+ H*® w s o o
ngfu K i +p—usmax((),efs)+ufm1n(0,efs),

(47)
Mobile Bed Layer :
OH®* 0
= (H*T®
ot * &r( )
p’ P
=% min(0, eys) — max(0, efs) + > max(0, ep) + min(0, ep), (48)
O(H*u®) 0 e P g
— ( H3(w* P HSHf J(H? 2
o (@) +psg + 9
Fo .0 o0z
_ P f9%s s f Tfs )
g% _y(n H s T
T oa ( + >3$+ spt
f
—us max(0,efs) — %Uf min(0, eys) + Us min(0, ep), (49)
Static Bed Layer :
0z
a5 = —max(0, egp) — %min((),esb). (50)

This shallow water type model is derived from the original Navier-Stokes equations (29)-(31) by using the
shallow water assumption (45) and an integration along the vertical direction. This process is very similar to
the one used in [11] to obtain the classical shallow water model. Let us give some details for the fluid layer in
the constant density case. First we integrate the mass equation (29) on the fluid layer to obtain

0
f
875/ dz + /pu (t,z,2)d

Oy 0z T L R A S
—Phgr tPh g PN g+ Ph gy el = ppwy, = 0. (51)

Then we use boundary conditions (38 ) and (41) to write

0
8t/ fdz—|—f/ pluf t:cz)dz+pfsefs—0

Next we introduce the layer depth Hf =5 — z, and the layer velocity

1 n
gl = It
a = f/z'pu (t,z,2)dz,
to obtain
oHf 0
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We finally consider an upwind estimation of the interface density pss to derive equation (46). The process is
similar for the momentum equation and for the mobile bed layer. Note that comparison between equations
(43) and (50) is quite surprising. It should be noted that equation (43) has to be seen as an interface condition
between static and mobile bed layers whereas equation (50) is obtained after an integration process over the
static bed layer.

In the previous derivation, we assumed that the densities are constant in each layer. The derivation can be
done for the general case where the densities depend on the concentration of the sediment in each layer. It is
also possible to consider an intermediate version by taking into account the Boussinesq assumption (34).

It remains to give an expression for the exchange terms ey and ey, In the constant densities case, the total
mass conservation imposes a relation between these two parameters

Pb — Ps
e = — €sp- (52)
T = by

Possible expressions for ey, are discussed in [20]. Here we choose a relation where ey, is proportional to the
jump of the shear stress, and we consider a Mohr-Coulomb bed strength

-1
€sp = Pl ((p* = p!YH* tan ¢ + ), Tb= C?p®|u®|? sgn(u®).labeleq : esb (53)

5.2. Steady states

For a special choice of constitutive functions for ey, es, Tfs, 7, Ty and constant densities pb > p*>pf >0
of the layers we determine steady states of the problem. Let us first give the missing constitutive relation for
the interface shear stress :

f
p
Trs = C'SE(uf —u®)?sgn(uf — u®). (54)
We also consider there is no wind and so 7, = 0. To investigate steady states of the system(46)-(50) with the
above constitutive laws, we introduce the following expansions, for a small parameter ¢:

Hi(z,t) = Hi(z) + cHi(z,t) + o(e), u'(z,t) = 0+ eul(z,t) + o(e), for i € {f, s} (55)

Then we obtain the following Lemma, whose proof is immediate by inserting the expansions (55), into the
equations (46)-(50)

Lemma 5.1. Provided (55) is a solution of (46)-(50) with constitutive laws given by (52)-(54), it satisfies the
following conditions

S a S
H =0, %(H[{jLZ):o, H; = 0.

This shows that we can only have steady states when H§. Thus, the (expected) “lake at rest” condition

)
o (H + H +2) =0

is simplified accordingly. The latter condition H;j = 0 shows that steady states are incompatible even with
small (order &) perturbations of H®. This indicates some sort of instability of the steady states with respect to
this variable.
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5.3. Linear Stability

We also tried to determine how the fluxes between the phases in (46)-(50) have to be chosen, such that
a linearly stable system is obtained. To this end we started with a simplified model where there is no mass
exchange between the phases, the bottom is flat and the pure water and the mobile bed have constant prescribed
densities pf, p*, respectively. The only exchange between the phases, we considered, was a strong friction term.
As we were not able to determine in which cases the system is linearly stable, we will just explain the problems
we encountered, when trying classical linear stability analysis.

The simplified system with quadratic friction reads

0 0 :

—atHf + 5 (Hfuf) =0 (56)
O i+ 2 i w2+ 9 (o2 79 s 21,8 — s l(uf — o
&(H u )+%(H (u?) +§(H ))+9H 8xH = ON|u —u’|(u) —u®) (57)

8 S a S,,S

—atH +—ax(Hu):0 (58)
0 S, S 0 S(, 8\2 g s\2 sa f 20, f s f s 2(,,5],,8
&(Hu)%-%(H (u®) +§(H))—|—rgH —axH = —rCXu) —u®|(u) —u®) — KX%|u’|u®, (59)

where K A2, C\? are friction coefficients and r := p//p*. To determine the behavior for strong friction and long
times we change the time variable and expanded the velocities

5= \"'t, u' =0+ A"t 4 oA for i e {f,s}. (60)

We insert (60) in (56)-(59) and only consider the leading order equations, which are of order A=! for the mass
conservation equations and of order A\° for the momentum balances. We obtain

0 0

L R

S HT 4 (HIb) =0 (61)
2 g £\2 fﬁ s __ s f s f
89:(2(H )+ gH [“)xH = Cv® —v'|(v® —v!) (62)

0 s 0 s..8\ __

st T g =0 o
—a (Q(HS)2) —|—7‘gH5—a HT = —rCv® —vf|(vS —vf) — K|vg|v (64)
0z 2 Oz s

The equations (61)-(64) can be rewritten as a problem for H*, Hf only, by solving (62),(64) for v®,v* and
inserting the result into (61),(63). Thereby we obtain

%Hf—ﬁ-% (Hf (—sgn(A)\/g—sgn(Hf;;(Hf+H3))\/nga(1(Hf+Hs)>> =0 (65)

0 s 0 s 141 _
%H +8m< H?sgn(A) K) =0, (66)

where 9 9
A:=gr(H + Hs)a—Hf +g(rH! + H*) o H".
x x
To find out whether the system (65),(66) is linear stable or not, one investigates the behavior of perturbations
of solution H{, Hg to (65),(66) as follows. For small values of € we define

Hi=H:+ecHi +o(c) forie{f s} (67)
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insert (67) into (65),(66) and study the arising system of equations for HY, Hf. It has the form

2 () ()

where A, D : [0,00) x R — R2*2 will be given in the sequel. The classical strategy is to exploit the properties of
A and D to determine whether or not perturbations are damped over time. This seems to be impossible here
because of the involved structure of A and D. In particular D is singular for

31{5:0 or Hfa(H0+HO)_0

6 S
—H} + g(rHI + Ho)ax o

Ag = gr(Hof + Hg)&z

The latter condition indicates that we cannot consider linearizations around constant solutions, in this setting.
Finally let us give the component-wise definitions of A and D such that (68) is valid,

A 0 ,
A1 = —sgn(4o) % (Hfa (HO + H)) \/ HOa (Hf—i-HO)—Sgn Ao)H + Hf)

\/4|AO|K 396

0 0
_ f f g f
SgH(H o (H + Hf ))\/4CHf F} (Hf +H0) 8.’L‘(H +HO)

gr )

Az = Sgn(Ao)\/é#Ho 88 (rHf + Hy),  An = —Sgn(Ao)\/WHo%(Hg + H{)
Agy = —sgn(Ap) F sgn(A 4&0' HS%( H(J; + Hj)

Dy = —sgn(Ao) \/‘HTHf Hf + Hp) —sgn(H 86 (Hf+H ))\/4CHgaax£qu +H5)Hg
D1y = — sgn(Ao) \/WHJ” (rHY + HE) — sgn(H] 68 (H{ + Hg ))\/4CH (gHO +H0)Hg

HO (Hf + H3), Doy = —sgn(Ag) Hi(rHY + HY).

~/4|A0\K
6. A RELAXATION APPROACH

The system (46)-(50) is quite complex : the eigenvalues are impossible to compute analytically and the field
are fully non linear. It follows that it is not possible to use approximate Riemann solvers. As in the first part of
this work, a possible way to cure this problem is to use a relaxation approach. So we introduce three auxiliary
quantities, namely the fluid pressure, the ”fluid bottom” and the related ”fluid bottom” flux. For simplicity we
consider the model with constant densities and we give the details of the method for the upper fluid layer. We
first consider the ”fluid bottom”

zs(tyx) = Z(t,x) + H*(t, x).
Using equations (48) and (50), we obtain

0z 0 S b
E)Zt + %(Hsﬂs) = —g—s min(0, ers) — max(0, ers) + %max(o, ep) + min(0, ep)

—max(0, es) — % min(0, esp). (69)
b
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Then we can write the following relaxation model for the fluid (we do not consider the zero order right hand
side and so we omit the algebraic exchange terms)

3tHf + 8IHfﬂf = 0 (70)
8tHfaf —i—ax[Hfﬂ?—Fﬂ'f] = —nga@-Zf (71)
] af L, Hf

atﬂ'f +Uf83;7'rf + Ffaxu]f = rf[g7 *ﬂ'f] (72)
1

8th + 895@}( = —[zs — Zf] (73)
Af
o, Qs 1

where Iy (resp. zy and Q) denotes the auxiliary quantity that allows us to relax the fluid pressure (resp. the
"fluid bottom” and ”fluid bottom” flux). Here the parameters ay and by have to be chosen sufficiently large
to ensure the stability of the model. Starting from equations (48)-(49) and using equations (46) and (50), we
obtain the same kind of model for the mobile bed layer where all the quantities are denoted by subscript s

Oy Hyug + p[Hou? + 1] = ngs% (76)
_ a3 1 HY  py
atﬂs + usamﬁs + Eamus = /\75[ 7 - gEHSHf - WS] (77)
1
Ozt 0:Qu = 2+ Zin _— (78)
b? 9 Qs 1 py
0,Qs + (Hsg - Us> Orzs + 2Us% = E[EHfuf - Qs). (79)

Many remarks have now to be done. First, the relaxed model (70)-(78) obviously tends (at least formally) to
the original model (46)-(50) when the positive parameters Ay and A tend to zero. Second, we note that the
two systems (70)-(74) and (75)-(79) are only coupled through the right hand side relaxation terms that appear
in equations (73)-(74) and (77)-(79). Since we see in the first part of this work that these relaxation terms are
not explicitely computed (they are taken into account at once when we update the auxiliary quantities at the
new time step), it follows that we obtained two decoupled systems ! Third, we remark that systems (70)-(74)
and (75)-(79) are very similar to system (5)-(9) that we obtained in the first part of this work. It follows that
the relaxation solver that has been presented previously can be applied without any big change to this much
more complex case.

7. CONCLUSION

In this note, we consider the morphodynamic coupling in rivers. We first propose a coupled finite volume
numerical scheme for the classical Saint-Venant — Exner model that is based on a relaxation approach. We
prove the relaxation model is stable and the relaxation solver is well-posed and we compute some numerical test
cases to show the stability of this new solver even for stiff cases. Then we derived a new three layers model that
we hope to be more relevant in the physical sense than the classical approach and we show that the relaxation
framework can be extended to this new model. Further work has to be done to improve the properties of the
relaxation solver and to extend it to the three-layer model.
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